87
Views
1
CrossRef citations to date
0
Altmetric
Articles

Coupled field formulation of exactly integrated membrane finite elements insensitive to distortion

ORCID Icon, &

References

  • N. S. Lee and K. J. Bathe, “Effects of element distortion on the performance of isoparametric elements,” Int. J. Numer. Methods Eng., vol. 36, no. 20, pp. 3553–3576, 1993.
  • J. A. Stricklin, W. S. Ho, E. Q. Richardson and W. E. Haisler, “On isoparametric vs. linear strain triangular elements,” Int. J. Numer. Methods Eng., vol. 11, no. 6, pp. 1041–1043, 1977.
  • J. Backlund, “On isoparametric elements,” Int. J. Numer. Methods Eng., vol. 12, pp. 731–732, 1978.
  • L. N. Gifford, “More on distorted isoparametric elements,” Int. J. Numer. Methods Eng., vol. 14, no. 2, pp. 290–291, 1979.
  • B. M. Irons, “Engineering applications of numerical integration in stiffness methods,” AIAA J., vol. 4, no. 11, pp. 2035–2037, 1966.
  • R. L. Taylor, J. C. Simo, O. C. Zienkiewicz and A. H. C. Chan, “The patch test—a condition for asserting term convergence,” Int. J. Numer. Methods Eng., vol. 22, no. 1, pp. 39–62, 1986.
  • A. Razzaque, “The patch test for elements,” Int. J. Numer. Methods Eng., vol. 22, no. 1, pp. 63–71, 1986.
  • C. Hua, “An inverse transformation for quadrilateral isoparametric elements: analysis and application,” Finite Elements Anal. Design, vol. 7, no. 2, pp. 159–166, 1990.
  • E. L. Wilson, R. L. Taylor, W. P. Doherty, T. Ghabussi, et al., “Incompatible displacement models,” in Numerical and Computer Methods in Structural Mechanics, S. T. Fenven, Eds. New York, NY, USA: Academic Press, 1973, pp. 43–57.
  • R. L. Taylor, P. J. Beresford and E. L. Wilson, “A non-conforming element for stress analysis,” Int. J. Numer. Methods Eng., vol. 10, no. 6, pp. 1211–1219, 1976.
  • R. H. MacNeal and R. L. Harder, “A proposed standard set of problems to test finite element accuracy,” Finite Elements Anal. Design, vol. 1, no. 1, pp. 3–20, 1985.
  • K. M. Rao and U. Shrinivasa, “A set of pathological tests to validate new finite elements,” Sadhana, vol. 26, no. 6, pp. 549–590, 2001.
  • R. H. MacNeal, “A theorem regarding the locking of tapered four noded membrane elements,” Int. J. Numer. Methods Eng., vol. 24, no. 9, pp. 1793–1799, 1987.
  • T. H. H. Pian and K. Sumihara, “Rational approach for assumed stress finite elements,” Int. J. Numer. Methods Eng., vol. 20, no. 9, pp. 1685–1695, 1984.
  • K. Y. Sze, “On immunizing five-beta hybrid stress element models from ‘trapezoidal locking in practical analyses,” Int. J. Numer. Methods Eng., vol. 47, no. 4, pp. 907–920, 2000.
  • R. H. MacNeal, “Derivation of element stiffness matrices by assumed strain distributions,” Nucl. Eng. Design, vol. 70, no. 1, pp. 3–12, 1982.
  • K. S. Chun and S. K. Kassegne, “A new, efficient 8-node serendipity element with explicit and assumed strains formulations,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 6, no. 4, pp. 285–292, 2005.
  • M. Iura and S. N. Atluri, “Formulation of a membrane finite element with drilling degrees of freedom,” Comput. Mech., vol. 9, no. 6, pp. 417–428, 1992.
  • K. Y. Sze, W. Chen and Y. K. Cheung, “An efficient quadrilateral plane element with drilling degrees of freedom using orthogonal stress modes,” Comput. Struct., vol. 42, no. 5, pp. 695–705, 1992.
  • S. Rajendran and K. M. Liew, “A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic field,” Int. J. Numer. Methods Eng., vol. 58, pp. 1718–1748, 2003.
  • C. S. Wang, X. K. Zhang and P. Hu, “New formulation of quasi-conforming method: a simple membrane element for analysis of planar problems,” Eur. J. Mech. A/Solids, vol. 60, pp. 122–133, 2016.
  • Y. Q. Long and M. F. Huang, “A generalized conforming isoparametric element,” Appl. Math. Mech. (English Ed.), vol. 9, no. 10, pp. 929–936, 1988.
  • R. D. Cook, D. S. Malkus and M. E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd ed. New York, NY, USA: John Wiley & Sons Inc., 1989.
  • Y. Q. Long, J. X. Li, Z. F. Long and S. Cen, “Area coordinates used in quadrilateral elements,” Commun. Numer. Methods Eng., vol. 15, no. 8, pp. 533–545, 1999.
  • Z. F. Long, J. X. Li, S. Cen and Y. Q. Long, “Some basic formulae for area co-ordinates used in quadrilateral elements,” Commun. Numer. Methods Eng., vol. 15, no. 12, pp. 841–852, 1999.
  • X. M. Chen, S. Cen, Y. Q. Long and Z. H. Yao, “Membrane elements insensitive to distortion using the quadrilateral area coordinate method,” Comput. Struct., vol. 82, no. 1, pp. 35–54, 2004.
  • S. Cen, X. M. Chen and X. R. Fu, “Quadrilateral membrane element family formulated by the quadrilateral area coordinate method,” Comput. Methods Appl. Mech. Eng., vol. 196, no. 41-44, pp. 4337–4353, 2007.
  • G. Prathap and V. Senthilkumar, “Making sense of the quadrilateral area coordinate membrane elements,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 49-50, pp. 4379–4382, 2008.
  • K. J. Bathe, Finite Element Procedures, New Delhi, India: Prentice-Hall (India), 1996.
  • G. Prathap, “Finite element analysis and the stress correspondence paradigm,” Sadhana, vol. 21, no. 5, pp. 525–546, 1996.
  • G. Singh and G. V. Rao, “A lock-free material finite element for non-linear oscillations of laminated plates,” J. Sound Vib., vol. 230, no. 2, pp. 221–240, 2000.
  • M. Mitra, S. Gopalakrishnan and M. Seetharama Bhat, “A new super convergent thin walled composite beam element for analysis of box beam structures,” Int. J. Solids Struct., vol. 41, no. 5-6, pp. 1491–1518, 2004.
  • S. Ramaprasad, “Exact solution of shear flexible laminated curved beams using a coupled field formulation,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 15, no. 1, pp. 54–61, 2014.
  • S. Ramaprasad, B. Dattaguru and G. Singh, “Exact solutions for laminated composite beams using a unified state space formulation,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 20, no. 4, pp. 319–334, 2019.
  • E. Samaniego, et al., “An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementations and applications,” Comput. Methods Appl. Mech. Eng., vol. 362, pp. 112790, 2020.
  • J. N. Reddy, Finite Element Method, 2nd ed. Hightstown, NJ, USA: McGraw-Hill, Inc., 1993.
  • D. Chapelle and K. J. Bathe, “The inf-sup test,” Comp. Struct., vol. 47, no. 4-5, pp. 537–545, 1993.
  • K. J. Bathe, “The inf–sup condition and its evaluation for mixed finite element methods,” Comput. Struct., vol. 79, no. 2, pp. 243–252, 2001.
  • W. Gilewski and M. Sitek, “The inf-sup condition tests for shell/plate finite elements,” Arch. Civil Eng. LVII, vol. 57, no. 4, pp. 425–448, 2011.
  • C. C. Wu, M. G. Huang and T. H. H. Pian, “Consistency condition and convergence criteria of incompatible elements: general formulation of incompatible functions and its application,” Comput. Struct., vol. 27, no. 5, pp. 639–644, 1987.
  • R. Piltner and R. L. Taylor, “A systematic constructions of B-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems,” Int. J. Numer. Methods Eng., vol. 44, no. 5, pp. 615–639, 1999.
  • R. H. MacNeal and R. L. Harder, “A refined four-noded membrane element with rotation degrees of freedom,” Comput. Struct., vol. 28, no. 1, pp. 75–84, 1988.
  • J. C. Simo and M. S. Rifai, “A class of mixed assumed strain methods and the method of incompatible modes,” Int. J. Numer. Methods Eng., vol. 29, no. 8, pp. 1595–1638, 1990.
  • I. Babuska and M. Suri, “Locking effects in the _finite element approximation of elasticity problems,” Numer. Math., vol. 62, no. 1, pp. 439–463, 1992.
  • Abaqus 6.9 HTML documentation. Providence, RI, USA: Dassault Systèmes Simulia Corp., 2009.
  • X. M. Chen, S. Cen, R. F. Xiang and Y. Q. Long, “A new quadrilateral area coordinate method (QACM-II) for developing quadrilateral finite element models,” Int. J. Numer. Methods Eng., vol. 73, no. 13, pp. 1911–1941, 2008.
  • S. Cen, X. M. Chen, C. F. Li and X. R. Fu, “Quadrilateral membrane elements with analytical element stiffness matrices formulated by the new quadrilateral area coordinate method (QACM-II),” Int. J. Numer. Methods Eng., vol. 77, no. 8, pp. 1172–1200, 2009.
  • H. C. Rhee and S. N. Atluri, “On the accuracy of finite element solutions of problems with traction boundary conditions,” Appl. Math. Modell., vol. 5, no. 2, pp. 103–108, 1981.
  • S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, International Student edition. New Delhi: McGraw Hill Publications, 1970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.