62
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multi-response optimization for sequential application of erosion–abrasion in face grinding configuration

&

References

  • B. Mohan, A. Rajadurai, and K. G. Satyanarayana, “Electric discharge machining of Al-SiC metal matrix composites using rotary tube electrode,” J. Mater. Process. Technol., vol. 153–154, pp. 978–985, 2004. DOI: 10.1016/j.jmatprotec.2004.04.347.
  • A. R. Ahamed, P. Asokan, and S. Aravindan, “EDM of hybrid Al-SiCp-B4Cp and Al-SiCp-glass MMCs,” Int. J. Adv. Manuf. Technol., vol. 44, no. 5–6, pp. 520–528, 2009. DOI: 10.1007/s00170-008-1839-0.
  • G. Qian, Y. Feng, B. Li, S. Huang, H. Liu, and K. Ding, “Effect of electrical current on the tribological behavior of the Cu-WS2-G composites in air and vacuum,” Chin. J. Mech. Eng., vol. 26, no. 2, pp. 384–392, 2013. DOI: 10.3901/CJME.2013.02.384.
  • Z. W. Zhong, “Grinding of aluminium-based metal matrix composites reinforced with Al2O3 or SiC particles,” Int. J. Adv. Manuf. Technol., vol. 21, no. 2, pp. 79–83, 2003. DOI: 10.1007/s001700300009.
  • E. R. I. Mahmoud, M. Takahashi, T. Shibayanagi, and K. Ikeuchi, “Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing,” Wear, vol. 268, no. 9–10, pp. 1111–1121, 2010. DOI: 10.1016/j.wear.2010.01.005.
  • S. T. Huang, L. Zhou, J. Chen, and L. F. Xu, “Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools, Mater,” Manuf. Process., vol. 27, no. 10, pp. 1090–1094, 2012. DOI: 10.1080/10426914.2011.654152.
  • J. P. Davim, “Diamond tool performance in machining metal-matrix composites,” J. Mater. Process. Technol., vol. 128, no. 1–3, pp. 100–105, 2002. DOI: 10.1016/S0924-0136(02)00431-4.
  • J. Kopac and P. Krajnik, “High performance grinding – a review,” J. Mater. Process. Technol., vol. 175, no. 1–3, pp. 278–284, 2006. DOI: 10.1016/j.jmatprotec.2005.04.010.
  • Z. Zhong and N. P. Hung, “Grinding of alumina/aluminum composites,” J. Mater. Process. Technol., vol. 123, no. 1, pp. 13–17, 2002. DOI: 10.1016/S0924-0136(02)00075-4.
  • J. B. J. W. Hegeman, J. T. M. G. Hosson, and G. With, “Grinding of WC-Co hard metals,” Wear, vol. 248, no. 1–2, pp. 187–196, 2001. DOI: 10.1016/S0043-1648(00)00561-5.
  • J. D. Kim, Y. H. Kang, D. X. Jin, and Y. S. Lee, “Development of discontinuous grinding wheel with multi porous grooves,” Int. J. Mach. Tools Manuf., vol. 37, no. 11, pp. 1611–1624, 1997. DOI: 10.1016/S0890-6955(97)00005-9.
  • F. Muller and J. Monaghan, “Non-conventional machining of particle reinforced metal matrix composite,” Int. J. Mach. Tools Manuf., vol. 40, no. 9, pp. 1351–1366, 2000. DOI: 10.1016/S0890-6955(99)00121-2.
  • B. Mohan, A. Rajadurai, and K. G. Satyanarayana, “Effect of SiC and rotation of electrode on electric discharge machining of Al/SiC composite,” J. Mater. Process. Technol., vol. 124, no. 3, pp. 297–304, 2002. DOI: 10.1016/S0924-0136(02)00202-9.
  • B. C. Abothula, V. Yadava, and G. K. Singh, “Development and experimental study of electrodischarge face grinding,” Mater. Manuf. Process., vol. 25, no. 6, pp. 482–487, 2010. DOI: 10.1080/10426910903367436.
  • R. N. Yadav and V. Yadava, “A new way of electro-abrasion hybrid machining (EAHM) using slotted-diamond grinding wheel,” Int. J. Manuf. Technol. Manag., vol. 28, no. 1/2/3, pp. 132–145, 2014. DOI: 10.1504/IJMTM.2014.064625.
  • A. Ghosh and A. K. Mallik, Manufacturing Science. New Delhi: East-West Press, 1999.
  • P. Koshy, V. K. Jain, and G. K. Lal, “Mechanism of material removal in electrical discharge diamond grinding,” Int. J. Mach. Tools Manuf., vol. 36, no. 10, pp. 1173–1185, 1996. DOI: 10.1016/0890-6955(95)00103-4.
  • S. K. Choudhury, V. K. Jain, and M. Gupta, “Electrical discharge diamond grinding of high speed steel,” Mach. Sci. Technol., vol. 3, no. 1, pp. 91–105, 1999. DOI: 10.1080/10940349908945685.
  • S. K. S. Yadav, V. Yadava, and V. L. Narayana, “Experimental study and parameter design of electro-discharge diamond grinding,” Int. J. Adv. Manuf. Technol., vol. 36, no. 1–2, pp. 34–42, 2008. DOI: 10.1007/s00170-006-0820-z.
  • G. K. Singh, V. Yadava, and R. Kumar, “Multiresponse optimization of electro-discharge diamond face grinding process using robust design of experiments,” Mater. Manuf. Process., vol. 25, no. 8, pp. 851–856, 2010. DOI: 10.1080/10426910903536758.
  • R. Ji, Y. Liu, Y. Zhang, F. Wang, B. Cai, and X. Dong, “Machining performance optimization in end ED milling and mechanical grinding compound process,” Mater. Manuf. Process., vol. 27, no. 2, pp. 221–228, 2012. DOI: 10.1080/10426914.2011.568569.
  • R. N. Yadav and V. Yadava, “Influence of input parameters on machining performances of slotted-electrical discharge abrasive grinding of Al/SiC/Gr metal matrix composite,” Mater. Manuf. Process., vol. 28, no. 12, pp. 1361–1369, 2013. DOI: 10.1080/10426914.2013.832300.
  • R. N. Yadav and V. Yadava, “Slotted-electrical discharge diamond cut-off grinding of Al/SiC/B4C hybrid metal matrix composite,” J. Mech. Sci. Technol., vol. 28, no. 1, pp. 309–316, 2014. DOI: 10.1007/s12206-013-0968-z.
  • R. N. Yadav and V. Yadava, “Machining of a hybrid–metal matrix composite using an erosion–abrasion-based compound wheel in electrical discharge grinding,” Particul. Sci. Technol., vol. 35, no. 4, pp. 494–504, 2017. DOI: 10.1080/02726351.2016.1170743.
  • J. Kozak, “Abrasive electrodischarge grinding (AEDG) of advanced materials,” Arch. Civ. Mech. Eng., vol. 2, pp. 83–101, 2002.
  • S. Kumar and S. K. Choudhury, “Prediction of wear and surface roughness in electro-discharge diamond grinding,” J. Mater. Process. Technol., vol. 191, no. 1–3, pp. 206–209, 2007. DOI: 10.1016/j.jmatprotec.2007.03.032.
  • S. K. S. Yadav and V. Yadava, “Neural network modeling and multi objective optimization of electrical discharge diamond cut-off grinding (EDDCG),” Int. J. Abras. Technol., vol. 4, no. 4, pp. 346–362, 2011. DOI: 10.1504/IJAT.2011.044509.
  • S. S. Agrawal and V. Yadava, “Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites,” Mater. Manuf. Process., vol. 28, no. 4, pp. 381–389, 2013. DOI: 10.1080/10426914.2013.763678.
  • R. N. Yadav, V. Yadava, and G. K. Singh, “Modeling and simulation of spark assisted diamond face grinding of tungsten carbide-cobalt composite,” Int. J. Manuf. Technol. Manag., vol. 28, no. 1/2/3, pp. 146–163, 2014. DOI: 10.1504/IJMTM.2014.064624.
  • M. R. Sunny and R. K. Kapania, “Artificial neural network based identification of a modified dynamic preisach model,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 15, no. 1, pp. 45–53, 2014. DOI: 10.1080/15502287.2013.834001.
  • I. Lakshmanan and S. Ramasam, “An artificial neural-network approach to software reliability growth modeling,” Proc. Comput. Sci, vol. 57, pp. 695–702, 2015. DOI: 10.1016/j.procs.2015.07.450.
  • W. Alaloul, M. S. Liew, N. A. W. Zawawi, B. S. Mohammed, M. Adamu, and H. A. Azia, “An artificial neural networks (ANN) model for evaluating construction project performance based on coordination factors,” Cogent Eng., vol. 5, pp. 1–18, 2018.
  • D. K. Kasdekar, V. Parashar, and C. Arya, “Artificial neural network models for the prediction of MRR in electro-chemical machining,” Mater Today: Proc., vol. 5, no. 1, pp. 772–779, 2018. DOI: 10.1016/j.matpr.2017.11.146.
  • P. J. Zucatelli, E. G. S. Nascimento, A. Á. B. Santos, and D. M. Moreira, “Nowcasting prediction of wind speed using computational intelligence and wavelet in Brazil,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 21, pp. 243–269, 2020.
  • C. H. Manoj and M. Biglarbegian, “An assessment of shallow neural network for stress updates in computational solid mechanics,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 21, no. 6, pp. 277–291, 2020. DOI: 10.1080/15502287.2020.1836534.
  • E. Y. Ng, N. Liu, and J. H. Siak, “Numerical parametric study of inlet distortion propagation in compressor using integral approach with Taguchi method,” Int. J. Comput. Methods Eng. Sci. Mech, vol. 6, pp. 167–177, 2005.
  • E. M. Anawa and A. G. Olabi, “Using Taguchi method to optimize welding pool of dissimilar laser-welded components,” Opt. Laser Technol., vol. 40, no. 2, pp. 379–388, 2008. DOI: 10.1016/j.optlastec.2007.07.001.
  • G. K. Singh, V. Yadava, and R. Kumar, “Robust parameter design and multi-objective optimisation of electro-discharge diamond face grinding of HSS,” Int. J. Mech. Mech. Mater., vol. 11, no. 1, pp. 1–19, 2012. DOI: 10.1504/IJMMM.2012.044919.
  • K. Palanikumar, “EDM process parameters optimization using Taguchi method,” Appl. Mech. Mater., vol. 766–767, pp. 867–872, 2015.
  • S. Chandramouli and K. Eswaraiah, “Experimental investigation of EDM process parameters in machining of 17-4 PH steel using Taguchi method,” Mater. Today: Proc., vol. 5, no. 2, pp. 5058–5067, 2018. DOI: 10.1016/j.matpr.2017.12.084.
  • K. Velayutham, K. Venkadeshwaran, and G. Selvakumar, “Optimisation of laser cutting of SS 430 plate using advanced Taguchi entropy weighted-based GRA methodology,” Int J. Mech. Manuf. Syst., vol. 11, no. 2/3, pp. 148–166, 2018. DOI: 10.1504/IJMMS.2018.10013933.
  • S. Sahu, J. Ali, P. Yupapin, and G. Singh, “Effectiveness of Taguchi method for the optimization of narrowband optical filters based on grating waveguides,” Microsyst. Technol., vol. 25, no. 3, pp. 789–795, 2019. DOI: 10.1007/s00542-018-4026-8.
  • S. U. Ahmed and R. Arora, “Quality characteristics optimization in CNC end milling of A36 K02600 using Taguchi’s approach coupled with artificial neural network and genetic algorithm,” Int. J. Syst. Assur. Eng. Manag., vol. 10, no. 4, pp. 676–695, 2019. DOI: 10.1007/s13198-019-00796-8.
  • M. Aamir, S. Tu, M. T. Rad, K. Giasin, and A. Vafadar, “Optimization and modeling of process parameters in multi-hole simultaneous drilling using Taguchi method and Fuzzy Logic approach,” Materials, vol. 13, no. 3, pp. 680–696, 2020. DOI: 10.3390/ma13030680.
  • S. Kumar, R. N. Yadav, and R. Kumar, “Empirical modeling and multi-response optimization of duplex turning for Ni-718 alloy,” Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 1, pp. 126–139, 2020. DOI: 10.1007/s13198-019-00931-5.
  • S. Kumar, R. N. Yadav, and R. Kumar, “Experimental studies and multi-response optimisation of duplex turning parameters using grey relational analysis with entropy measurement,” Int. J. Precis. Technol., vol. 9, no. 1, pp. 71–90, 2020. DOI: 10.1504/IJPTECH.2020.109777.
  • D. Mandal, S. K. Pal, and P. Saha, “Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II,” J. Mater. Process. Technol., vol. 186, no. 1–3, pp. 154–162, 2007. DOI: 10.1016/j.jmatprotec.2006.12.030.
  • N. K. Jain, V. K. Jain, and K. Deb, “Optimization of process parameters of mechanical type advanced machining processes using genetic algorithms,” Int. J. Mach. Tools Manuf., vol. 47, no. 6, pp. 900–919, 2007. DOI: 10.1016/j.ijmachtools.2006.08.001.
  • R. N. Yadav, V. Yadava, and G. K. Singh, “Application of ANN-NSGA-II hybrid methodology for modeling and optimization of electrical discharge diamond face grinding of tungsten carbide-cobalt (WC-Co) composite,” J. Mach. Form. Technol., vol. 4, pp. 187–206, 2012.
  • R. Tiwari, K. K. Sunil, and R. S. Reddy, “An optimal design methodology of tapered roller bearings using genetic algorithm,” Int. J. Comp. Methods Eng. Sci. Mech., vol. 13, no. 2, pp. 108–127, 2012. DOI: 10.1080/15502287.2011.654375.
  • J. S. Rao and R. Tiwari, “A pareto optimal design analysis of magnetic thrust bearings using multi-objective genetic algorithm,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 16, no. 2, pp. 71–87, 2015. DOI: 10.1080/15502287.2015.1009577.
  • T. D. B. Kannan, B. S. Kumar, G. R. Kannan, M. Umar, and M. C. Khan, “Application of genetic algorithm technique for machining parameters optimization in drilling of stainless steel,” Mech. Mech. Eng., vol. 23, no. 1, pp. 271–276, 2019. DOI: 10.2478/mme-2019-0036.
  • S. Kumar, A. K. Gupta, and P. Chandna, “State of art optimization techniques for machining parameters optimization during milling,” Int. J. Eng. Adv. Technol., vol. 8, pp. 5104–5114, 2019.
  • G. Daniel, G. Kumar, and A. H. Rizvi, “Optimization of material removal rate in wire-EDM using genetic algorithms,” In. J. Appl. Eng. Res., vol. 14, pp. 313–315, 2019.
  • P. K. Shrivastava, B. Singh, Y. Shrivastava, A. K. Pandey, and D. Nandan, “Investigation of optimal process parameters for laser cutting of Inconel-718 sheet,” Proc. IMechE Part C: J. Mech. Eng. Sci., vol. 234, no. 8, pp. 1581–1597, 2020. DOI: 10.1177/0954406219895533.
  • D. Singh and R. Shukla, “Multi-objective optimization of selected non-traditional machining processes using NSGA-II,” 10.5267/j.dsl, vol. 9, pp. 421–438, 2020. DOI: 10.5267/j.dsl.2020.3.003.
  • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002. DOI: 10.1109/4235.996017.
  • L. Song, “NGPM–A NSGA-II program in MATLAB, version 1.4, file exchange, Mathworks,” 2015. Available: http://www.mathworks.com/matlabcentral/fileexchange.
  • P. J. Ross, Taguchi Techniques for Quality Engineering, 2nd ed. New York: McGraw Hill, 2005.
  • J. Antony, “Simultaneous optimisation of multiple quality characteristics in processes using Taguchi’s quality loss,” Int. J. Adv. Manuf. Technol., vol. 17, no. 2, pp. 134–138, 2001. DOI: 10.1007/s001700170201.
  • D. C. Montgomery, Design and Analysis of Experiments. New Delhi, India: Wiley, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.