201
Views
3
CrossRef citations to date
0
Altmetric
Articles

Parameter-uniform finite difference method for singularly perturbed parabolic problem with two small parameters

, &

References

  • S. Gowrisankar and N. Srinivasan, “Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids,” Comput. Phys. Commun., vol. 185, no. 7, pp. 2008–2019, 2014. DOI: https://doi.org/10.1016/j.cpc.2014.04.004.
  • Y. S. Suayip and N. Sahin, “Numerical solutions of singularly perturbed one-dimensional parabolic convection-diffusion problems by the Bessel collocation method,” Appl. Math. Comput., vol. 220, pp. 305–315, 2013.
  • V. Kumar and B. Srinivasan, “A novel adaptive mesh strategy for singularly perturbed parabolic convection-diffusion problems,” Differ. Equ. Dyn. Syst., vol. 27, no. 1–3, pp. 203–220, 2019. DOI: https://doi.org/10.1007/s12591-017-0394-2.
  • C. Yanping and L. Li-Bin, “An adaptive grid method for singularly perturbed time-dependent convection-diffusion problems,” Commun. Comput. Phys., vol. 20, pp. 1340–1358, 2016.
  • T. Aga, G. File, and G. Degla, “Fitted operator average finite difference method for solving singularly perturbed parabolic convection-diffusion problems,” Int. J. Eng. Appl. Sci., vol. 11, no. 3, pp. 414–427, 2019. DOI: https://doi.org/10.24107/ijeas.567374.
  • C. Clavero and J. L. Gracia, “A higher-order uniformly convergent method with Richardson extrapolation in time for singularly perturbed reaction-diffusion parabolic problems,” J. Comput. Appl. Math., vol. 252, pp. 75–85, 2013. DOI: https://doi.org/10.1016/j.cam.2012.05.023.
  • J. B. Munyakazi and K. C. Patidar, “A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems,” Comput. Appl. Math., vol. 32, no. 3, pp. 509–519, 2013. DOI: https://doi.org/10.1007/s40314-013-0033-7.
  • J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimate in the Maximum Norm for Linear Problems in One and Two Dimensions. Singapore: World Scientific, 1996.
  • H. G. Roos, M. Stynes, and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion-Reaction and Flow Problems, 2nd ed., Berlin Heidelberg: Springer-Verlag, 2008.
  • W. K. Zahra, M. S. El-Azab, and A. M. El Mhlawy, “Spline difference scheme for two-parameter singularly perturbed partial differential equations,” J. Appl. Math. Inform., vol. 32, no. 1–2, pp. 185–201, 2014. DOI: https://doi.org/10.14317/jami.2014.185.
  • J. B. Munyakazi, “A robust finite difference method for two-parameter parabolic convection-diffusion problems,” Appl. Math. Inf. Sci., vol. 9, pp. 2877–2883, 2015.
  • A. Jha and M. K. Kadalbajoo, “A robust layer adapted difference method for singularly perturbed two-parameter parabolic problems,” Int. J. Comput. Math., vol. 92, no. 6, pp. 1204–1221, 2015. DOI: https://doi.org/10.1080/00207160.2014.928701.
  • V. Gupta, M. K. Kadalbajoo, and R. K. Dubey, “A parameter-uniform higher-order finite difference scheme for the singularly perturbed time-dependent parabolic problem with two small parameters,” Int. J. Comput. Math., vol. 96, no. 3, pp. 474–499, 2019. DOI: https://doi.org/10.1080/00207160.2018.1432856.
  • E. O'Riordan, M. L. Pickett, and G. I. Shishkin, “Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems,” Math. Comput., vol. 75, no. 255, pp. 1135–1154, 2006. DOI: https://doi.org/10.1090/S0025-5718-06-01846-1.
  • M. K. Kadalbajoo and S. A. Yadaw, “Parameter-uniform finite element method for two-parameter singularly perturbed parabolic reaction-diffusion problems,” Int. J. Comput. Methods, vol. 9, no. 4, pp. 1250047, 2012. DOI: https://doi.org/10.1142/S0219876212500478.
  • L. J. Gracia and E. O’Riordan, “Numerical approximation of solution derivatives in the case of singularly perturbed time-dependent reaction-diffusion problems,” J. Comput. Appl. Math., vol. 273, pp. 13–24, 2015. DOI: https://doi.org/10.1016/j.cam.2014.05.023.
  • T. A. Bullo, G. F. Duressa, and G. A. Degla, “Robust finite difference method for singularly perturbed two-parameter parabolic convection-diffusion problems,” Int. J. Comput. Methods, vol. 18, no. 2, pp. 2050034, 2021. DOI: https://doi.org/10.1142/S0219876220500346.
  • M. Chandru, T. Prabha, and V. Shanthi, “A parameter robust higher order numerical method for singularly perturbed two-parameter problems with non-smooth data,” J. Comput. Appl. Math., vol. 309, pp. 11–27, 2017. DOI: https://doi.org/10.1016/j.cam.2016.06.009.
  • T. Prabha, M. Chandru, and V. Shanthi, “Hybrid difference scheme for singularly perturbed reaction-convection-diffusion problem with boundary and interior layers,” Appl. Math. Comput., vol. 314, pp. 237–256, 2017. DOI: https://doi.org/10.1016/j.amc.2017.06.029.
  • M. Chandru, T. Prabha, P. Das, and V. Shanthi, “A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms,” Differ. Equ. Dyn. Syst., vol. 27, no. 1–3, pp. 91–112, 2019. DOI: https://doi.org/10.1007/s12591-017-0385-3.
  • M. Chandru, P. Das, and H. Ramos, “Numerical treatment of two-parameter singularly perturbed parabolic convection-diffusion problems with non-smooth data,” Math. Methods Appl. Sci., vol. 41, no. 14, pp. 5359–5387, 2018. DOI: https://doi.org/10.1002/mma.5067.
  • T. Dugassa, G. File, and T. Aga, “Stable numerical method for singularly perturbed boundary value problems with two small parameters,” Ethiop. J. Educ. Sci., vol. 14, no. 2, pp. 9–27, 2019.
  • M. K. Siraj, G. F. Duressa, and T. A. Bullo, “Fourth-order stable central difference with Richardson extrapolation method for second-order self-adjoint singularly perturbed boundary value problems,” J. Egypt. Math. Soc., vol. 27, no. 1, pp. 1–14, 2019. DOI: https://doi.org/10.1186/s42787-019-0047-4.
  • M. M. Woldaregay and G. F. Duressa, “Uniformly convergent numerical method for singularly perturbed delay parabolic differential equations arising in computational neuroscience,” Kragujev. J. Math., vol. 46, no. 1, pp. 65–84, 2022.
  • P. Das and V. Mehrmann, “Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters,” BIT Numer. Math., vol. 56, no. 1, pp. 51–76, 2016. DOI: https://doi.org/10.1007/s10543-015-0559-8.
  • P. Das, “A higher-order difference method for singularly perturbed parabolic partial differential equations,” J. Differ. Equ. Appl., vol. 24, no. 3, pp. 452–477, 2018. DOI: https://doi.org/10.1080/10236198.2017.1420792.
  • D. Shakti, J. Mohapatra, P. Das, and J. Vigo-Aguiar, “A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms,” J. Comput. Appl. Math., pp. 113167, 2020. DOI: https://doi.org/10.1016/j.cam.2020.113116.
  • P. Das, “An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh,” Numer. Algorithms, vol. 81, no. 2, pp. 465–487, 2019. DOI: https://doi.org/10.1007/s11075-018-0557-4.
  • P. Das, “Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems,” J. Comput. Appl. Math., vol. 290, pp. 16–25, 2015. DOI: https://doi.org/10.1016/j.cam.2015.04.034.
  • P. Das and S. Natesan, “Optimal error estimate using mesh equidistribution technique for the singularly perturbed system of reaction-diffusion boundary-value problems,” Appl. Math. Comput., vol. 249, pp. 265–277, 2014. DOI: https://doi.org/10.1016/j.amc.2014.10.023.
  • P. Das and J. Vigo-Aguiar, “Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction-diffusion problems involving a small perturbation parameter,” J. Comput. Appl. Math., vol. 354, pp. 533–544, 2019. DOI: https://doi.org/10.1016/j.cam.2017.11.026.
  • T. A. Bullo, G. F. Duressa, and G. A. Degla, “Accelerated fitted operator finite difference method for singularly perturbed parabolic reaction-diffusion problems,” Comput. Methods Differ. Equ., vol. 9, no. 3, pp. 886–898, 2021.
  • K. Kumar, P. C. Podila, P. Das, and H. Ramos, “Agraded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems,” Math. Methods Appl. Sci., 2021. DOI: https://doi.org/10.1002/mma.7358.
  • P. Das and S. Rana, “Theoretical prospects of fractional order weakly singular Volterra Integro differential equations and their approximations with convergence analysis,” Math. Methods Appl. Sci., vol. 44, no. 11, pp. 9419–9440, 2021. DOI: https://doi.org/10.1002/mma.7369.
  • P. Das, S. Rana, and H. Ramos, “A perturbation-based approach for solving fractional-order Volterra–Fredholm integrodifferential equations and its convergence analysis,” Int. J. Comput. Math., vol. 97, no. 10, pp. 1994–2014, 2020. DOI: https://doi.org/10.1080/00207160.2019.1673892.
  • P. Das, S. Rana, and H. Ramos, “On the approximate solutions of a class of fractional-order nonlinear Volterra integrodifferential initial value problems and boundary value problems of the first kind and their convergence analysis,” J. Comput. Appl. Math., pp. 113116, 2020. DOI: https://doi.org/10.1016/j.cam.2020.113116.
  • P. Das, S. Rana, and H. Ramos, “Homotopy perturbation method for solving Caputo‐type fractional‐order Volterra‐Fredholm integrodifferential equations,” Comput. Math. Methods, 2019. DOI: https://doi.org/10.1002/cmm4.1047.
  • M. J. Kabeto and G. F. Duressa, “Robust numerical method for singularly perturbed semilinear parabolic differential-difference equations,” Math. Comput. Simul., vol. 188, pp. 537–547, 2021. DOI: https://doi.org/10.1016/j.matcom.2021.05.005.
  • T. A. Bullo, G. A. Degla, and G. F. Duressa, “Uniformly convergent higher-order finite difference scheme for singularly perturbed parabolic problems with non-smooth data,” J. Appl. Math. Comput. Mech., vol. 20, no. 1, pp. 5–16, 2021. DOI: https://doi.org/10.17512/jamcm.2021.1.01.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.