200
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Numerical modeling of MHD micropolar fluid flow and melting heat transfer under thermal radiation and Joule heating

, &

References

  • B. C. Sakiadis, “Boundary‐layer behavior on continuous solid surfaces: I. Boundary‐layer equations for two‐dimensional and axisymmetric flow,” AIChE J., vol. 7, no. 1, pp. 26–28, 1961. DOI: 10.1002/aic.690070108.
  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys., vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” J. Phys. D: Appl. Phys., vol. 32, no. 5, pp. 577–585, 1999. DOI: 10.1088/0022-3727/32/5/012.
  • E. M. A. Elbashbeshy, “Heat transfer over an exponentially stretching continuous surface with suction,” Arch. Mech., vol. 53, no. 6, pp. 643–651, 2001.
  • B. Bidin and R. Nazar, “Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation,” Eur. J. Sci. Res., vol. 33, no. 4, pp. 710–717, 2009.
  • A. Ishak, “MHD boundary layer flow due to an exponentially stretching sheet with radiation effect,” Sains Malays., vol. 40, no. 4, pp. 391–395, 2011.
  • S. Mukhopadhyay, “Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation,” Ain Shams Eng. J., vol. 4, no. 3, pp. 485–491, 2013. DOI: 10.1016/j.asej.2012.10.007.
  • P. G. Siddheshwar, G. N. Sekhar, and A. S. Chethan, “Flow and heat transfer in a Newtonian liquid with temperature dependent properties over an exponential stretching sheet,” J. Appl. Fluid Mech., vol. 7, no. 2, pp. 367–374, 2014. DOI: 10.36884/jafm.7.02.20304.
  • I. Swain, S. R. Mishra, and H. B. Pattanayak, “Flow over exponentially stretching sheet through porous medium with heat source/sink,” J. Eng. (United Kingdom), vol. 2015, pp. 1–7, 2015. DOI: 10.1155/2015/452592.
  • N. L. Aleng, N. Bachok, and N. M. Arifin, “Flow and heat transfer of a nanofluid over an exponentially shrinking sheet,” Indian J. Sci. Technol., vol. 8, no. 31, pp.1-6, 2015. DOI: 10.17485/ijst/2015/v8i31/87246.
  • T. Hayat, R. Sajjad, T. Muhmmad, A. Alsaedi, and R. Ellahi, “On MHD nonlinear stretching flow of Powell–Eyring nanomaterial,” Results Phys., vol. 7, pp. 535–543, 2017. DOI: 10.1016/j.rinp.2016.12.039.
  • X.-Y. Tian, B.-W. Li, and Z.-M. Hu, “Convective stagnation point flow of a MHD non-Newtonian nanofluid towards a stretching plate,” Int. J. Heat Mass Transf., vol. 127, pp. 768–780, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.033.
  • H. Upreti, A. K. Pandey, M. Kumar, and O. D. Makinde, “Ohmic heating and non-uniform heat source/sink roles on 3D Darcy–Forchheimer flow of CNTs nanofluids over a stretching surface,” Arab J. Sci. Eng., vol. 45, no. 9, pp. 7705–7717, 2020. DOI: 10.1007/s13369-020-04826-7.
  • R. Agrawal and P. Kaswan, “MHD Eyring–Powell nanofluid past over an unsteady exponentially stretching surface with entropy generation and thermal radiation,” Heat Transf., vol. 50, no. 5, pp. 4669–4693, 2021. DOI: 10.1002/htj.22095.
  • H. Upreti, N. Joshi, A. K. Pandey, and S. K. Rawat, “Assessment of convective heat transfer in Sisko fluid flow via stretching surface due to viscous dissipation and suction,” Nano Sci. Technol. Int. J., vol. 13, no. 2, pp. 31–44, 2022. DOI: 10.1615/NanoSciTechnolIntJ.2022039531.
  • A. C. Eringen, “Simple microfluids,” Int. J. Eng. Sci., vol. 2, no. 2, pp. 205–217, 1964. DOI: 10.1016/0020-7225(64)90005-9.
  • A. C. Eringen, “Theory of micropolar fluids,” Indiana Univ. Math. J., vol. 16, no. 1, pp. 1–18, 1966. DOI: 10.1512/iumj.1967.16.16001.
  • J. Peddieson and R. P. McNitt, “Boundary layer theory for a micropolar fluid,” Recent Adv. Eng. Sci., vol. 5, pp. 405-426, 1970.
  • T. Ariman, M. A. Turk, and N. D. Sylvester, “Applications of microcontinuum fluid mechanics,” Int. J. Eng. Sci., vol. 12, no. 4, pp. 273–293, 1974. DOI: 10.1016/0020-7225(74)90059-7.
  • A. D. Kirwan, Jr., “Boundary conditions for micropolar fluids,” Lett. Appl. Eng. Sci., vol. 24, no. 7, pp. 1237–1242, 1986. DOI: 10.1016/0020-7225(86)90018-2.
  • R. C. Sharma and U. Gupta, “Thermal convection in micropolar fluids in porous medium,” Int. J. Eng. Sci., vol. 33, no. 13, pp. 1887–1892, 1995. DOI: 10.1016/0020-7225(95)00047-2.
  • G. Lukaszewicz, Micropolar Fluids: Theory and Applications. Boston: Birkhäuser, 1999.
  • A. Ishak, R. Nazar, and I. Pop, “Boundary-layer flow of a micropolar fluid on a continuously moving or fixed permeable surface,” Int. J. Heat Mass Transf., vol. 50, no. 23–24, pp. 4743–4748, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.03.034.
  • N. A. Yacob and A. Ishak, “Micropolar fluid flow over a shrinking sheet,” Meccanica, vol. 47, no. 2, pp. 293–299, 2012. DOI: 10.1007/s11012-011-9439-8.
  • M. A. A. Mahmoud and S. E. Waheed, “MHD flow and heat transfer of a micropolar fluid over a stretching surface with heat generation (absorption) and slip velocity,” J. Egypt. Math. Soc., vol. 20, no. 1, pp. 20–27, 2012. DOI: 10.1016/j.joems.2011.12.009.
  • Aurangzaib, M. Sharif Uddin, K. Bhattacharyya, and S. Shafie, “Micropolar fluid flow and heat transfer over an exponentially permeable shrinking sheet,” Propuls. Power Res., vol. 5, no. 4, pp. 310–317, 2016. DOI: 10.1016/j.jppr.2016.11.005.
  • K.-L. Hsiao, “Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature,” Int. J. Heat Mass Transf., vol. 112, pp. 983–990, 2017. 10.1016/j.ijheatmasstransfer.2017.05.042.
  • S. R. Mishra, I. Khan, Q. M. Al-Mdallal, and T. Asifa, “Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source,” Case Stud. Therm. Eng., vol. 11, no. 2017, pp. 113–119, 2018. DOI: 10.1016/j.csite.2018.01.005.
  • K. Singh, A. K. Pandey, and M. Kumar, “Analytical approach to stagnation-point flow and heat transfer of a micropolar fluid via a permeable shrinking sheet with slip and convective boundary conditions,” Heat Trans. Res., vol. 50, no. 8, pp. 739–756, 2019. DOI: 10.1615/HeatTransRes.2018024647.
  • K. Singh, A. K. Pandey, and M. Kumar, “Entropy generation impact on flow of micropolar fluid via an inclined channel with non-uniform heat source and variable fluid properties,” Int. J. Appl. Comput. Math., vol. 6, no. 3, pp. 85, 2020. DOI: 10.1007/s40819-020-00831-4.
  • E. Karvelas, G. Sofiadis, T. Papathanasiou, and I. Sarris, “Effect of micropolar fluid properties on the blood flow in a human carotid model,” Fluids, vol. 5, no. 3, pp. 1–16, 2020. DOI: 10.3390/fluids5030125.
  • K. Singh, A. K. Pandey, and M. Kumar, “Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with hall and ion-slip currents: an analytic approach,” Propul. Power Res., vol. 9, no. 3, pp. 289–303, 2020. DOI: 10.1016/j.jppr.2020.04.006.
  • H. S. Takhar, R. S. R. Gorla, and V. M. Soundalgekar, “Radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate,” Int. J. Numer. Methods Heat Fluid Flow, vol. 6, no. 2, pp. 77–83, 1996. DOI: 10.1108/09615539610113118.
  • S. Mukhopadhyay and R. S. R. Gorla, “Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation,” Heat Mass Transf., vol. 48, no. 10, pp. 1773–1781, 2012. DOI: 10.1007/s00231-012-1024-8.
  • K. Singh and M. Kumar, “Effects of thermal radiation on mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation and heat generation/absorption,” Int. J. Chem. Eng., vol. 2016, pp. 1–10, 2016. DOI: 10.1155/2016/8190234.
  • K.-L. Hsiao, “Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects,” Appl. Therm. Eng., vol. 112, pp. 1281–1288, 2017. DOI: 10.1016/j.applthermaleng.2016.08.208.
  • A. K. Pandey and M. Kumar, “Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation,” Alex. Eng. J., vol. 56, no. 1, pp. 55–62, 2017. DOI: 10.1016/j.aej.2016.08.035.
  • R. Agrawal and P. Kaswan, “Influence of thermal radiation on entropy analysis of generalized MHD unsteady viscous fluid flow on a stretching sheet with joule heating and viscous dissipation,” Comput. Therm. Sci., vol. 13, no. 4, pp. 21–33, 2021. DOI: 10.1615/ComputThermalScien.2021036513.
  • H. Upreti, A. K. Pandey, S. K. Rawat, and M. Kumar, “Modified Arrhenius and thermal radiation effects on three-dimensional magnetohydrodynamic flow of carbon nanotubes nanofluids over bi-directional stretchable surface,” J Nanofluids, vol. 10, no. 4, pp. 538–551, 2021. DOI: 10.1166/jon.2021.1804.
  • H. Upreti, A. K. Pandey, and M. Kumar, “Assessment of entropy generation and heat transfer in 3D hybrid nanofluids flow due to convective surface and base fluids,” J. Porous Media, vol. 24, no. 3, pp. 35–50, 2021. DOI: 10.1615/JPorMedia.2021036038.
  • T. Hayat, A. Shafiq and A. Alsaedi, “Characteristics of magnetic field and melting heat transfer in stagnation point flow of tangent-hyperbolic liquid,” J. Magn. Mater., vol. 405, pp. 97–106, 2016. DOI: 10.1016/j.jmmm.2015.10.080.
  • A. Ishak, R. Nazar, N. Bachok, and I. Pop, “Melting heat transfer in steady laminar flow over a moving surface,” Heat Mass Transf., vol. 46, no. 4, pp. 463–468, 2010. DOI: 10.1007/s00231-010-0592-8.
  • N. A. Yacob, A. Ishak, and I. Pop, “Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid,” Comput. Fluids, vol. 47, no. 1, pp. 16–21, 2011. DOI: 10.1016/j.compfluid.2011.01.040.
  • M. Mustafa, T. Hayat, and A. A. Hendi, “Influence of melting heat transfer in the stagnation-point flow of a Jeffrey fluid in the presence of viscous dissipation,” J. Appl. Mech. Trans. ASME, vol. 79, no. 2, pp. 1–5, 2012. DOI: 10.1115/1.4005560.
  • K. Das, “Radiation and melting effects on MHD boundary layer flow over a moving surface,” Ain Shams Eng. J., vol. 5, no. 4, pp. 1207–1214, 2014. DOI: 10.1016/j.asej.2014.04.008.
  • S. Ghosh, S. Mukhopadhyay, and K. Vajravelu, “Existence of dual solutions and melting phenomenon in unsteady nanofluid flow and heat transfer over a stretching surface,” J. Mech., vol. 35, no. 5, pp. 705–717, 2019. DOI: 10.1017/jmech.2018.44.
  • K. Singh, M. Kumar, and A. K. Pandey, “Melting and chemical reaction effects in stagnation point flow of micropolar fluid over a stretchable porous medium in the presence of nonuniform heat source/sink,” J. Porous Media, vol. 23, no. 8, pp. 767–781, 2020. DOI: 10.1615/JPorMedia.2020024600.
  • K. Singh, A. K. Pandey, and M. Kumar, “Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method,” Propul. Power Res., vol. 10, no. 2, pp. 194–207, 2021. DOI: 10.1016/j.jppr.2020.11.006.
  • I. C. Mandal, S. Mukhopadhyay, and K. Vajravelu, “Melting heat transfer of MHD micropolar fluid flow past an exponentially stretching sheet with slip and thermal radiation,” Int. J. Appl. Comput. Math., vol. 7, no. 2, pp. 1–18, 2021. DOI: 10.1007/s40819-021-00955-1.
  • K. Singh, A. K. Pandey, and M. Kumar, “Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder,” J. Egypt Math. Soc., vol. 29, no. 1, pp. 1-14, 2021. DOI: 10.1186/s42787-020-00109-0.
  • S. Ghosh and S. Mukhopadhyay, “Effects of slip on Cu–water or Fe3O4–water nanofluid flow over an exponentially stretched sheet,” Pramana – J. Phys., vol. 92, no. 6, pp. 1–7, 2019. DOI: 10.1007/s12043-019-1754-y.
  • W. Ibrahim, “MHD boundary layer flow and heat transfer of micropolar fluid past a stretching sheet with second order slip,” J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 791–799, 2017. DOI: 10.1007/s40430-016-0621-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.