117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Augmentation of the stable static travel range of electrostatically actuated slender nano-cantilevers by accounting for the influence of the van der Waals force

, &

References

  • R. C. Batra, M. Porfiri and D. Spinello, “Review of modeling electrostatically actuated microelectromechanical systems,” Smart Mater. Struct., vol. 16, no. 6, pp. R23–R31, 2007. DOI: 10.1088/0964-1726/16/6/R01.
  • W. M. Zhang, H. Yan, Z. K. Peng and G. Meng, “Electrostatic pull-in instability in MEMS/NEMS: A review,” Sens. Actuators, A, vol. 214, pp. 187–218, 2014. DOI: 10.1016/j.sna.2014.04.025.
  • P. Kim and C. M. Lieber, “Nanotube nanotweezers,” Science, vol. 286, no. 5447, pp. 2148–2150, 1999. DOI: 10.1126/science.286.5447.2148.
  • A. Ramezani, A. Alasty and J. Akbari, “Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces,” Int. J. Solids Struct., vol. 44, no. 14–15, pp. 4925–4941, 2007. DOI: 10.1016/j.ijsolstr.2006.12.015.
  • A. Ramezani, A. Alasty and J. Akbari, “Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force,” Nonlinear Anal. Hybrid Syst., vol. 1, no. 3, pp. 364–382, 2007. DOI: 10.1016/j.nahs.2006.10.011.
  • A. Ramezani, A. Alasty and J. Akbari, “Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers,” Microsyst. Technol., vol. 14, no. 2, pp. 145–157, 2008. DOI: 10.1007/s00542-007-0409-y.
  • A. Ramezani, A. Alasty and J. Akbari, “Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations,” Nanotechnology, vol. 19, no. 1, pp. 015501, 2008. DOI: 10.1088/0957-4484/19/01/015501.
  • A. Ramezani, A. Alasty and J. Akbari, “Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators,” Microsyst. Technol., vol. 12, no. 12, pp. 1153–1161, 2006. DOI: 10.1007/s00542-006-0244-6.
  • H. C. Nathanson, W. E. Newell, R. A. Wickstrom and J. R. Davis, “The resonant gate transistor,” IEEE Trans. Electron Devices, vol. 14, no. 3, pp. 117–133, 1967. DOI: 10.1109/T-ED.1967.15912.
  • R. R. Trivedi, D. N. Pawaskar and R. P. Shimpi, “Optimization of static and dynamic travel range of electrostatically driven microbeams using particle swarm optimization,” Adv. Eng. Software, vol. 97, pp. 1–16, 2016. DOI: 10.1016/j.advengsoft.2016.01.005.
  • N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg and M. Elwenspoek, “Stiction in surface micromachining,” J. Micromech. Microeng., vol. 6, no. 4, pp. 385–397, 1996. DOI: 10.1088/0960-1317/6/4/005.
  • E. M. Abdel-Rahman, M. I. Younis and A. H. Nayfeh, “Characterization of the mechanical behavior of an electrically actuated microbeam,” J. Micromech. Microeng., vol. 12, no. 6, pp. 759–766, 2002. DOI: 10.1088/0960-1317/12/6/306.
  • C. O Mahony, M. Hill, R. Duane and A. Mathewson, “Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams,” J. Micromech. Microeng, vol. 13, no. 4, pp. S75–S80, 2003. DOI: 10.1088/0960-1317/13/4/312.
  • S. Krylov and R. Maimon, “Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force,” ASME J. Vib. Acoust., vol. 126, no. 3, pp. 332–342, 2004. DOI: 10.1115/1.1760559.
  • Y. Zhang and Y. P. Zhao, “Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading,” Sens. Actuators, A, vol. 127, no. 2, pp. 366–380, 2006. DOI: 10.1016/j.sna.2005.12.045.
  • A. J. Kaneria, D. S. Sharma and R. R. Trivedi, “Static analysis of electrostatically actuated micro cantilever beam,” Procedia Eng., vol. 51, pp. 776–780, 2013. DOI: 10.1016/j.proeng.2013.01.111.
  • R. R. Trivedi, A. Bhushan, M. M. Joglekar, D. N. Pawaskar and R. P. Shimpi, “Enhancement of static and dynamic travel range of electrostatically actuated microbeams using hybrid simulated annealing,” Int. J. Mech. Sci., vol. 98, pp. 93–110, 2015. DOI: 10.1016/j.ijmecsci.2015.03.024.
  • D. Elata, “On the static and dynamic response of electrostatic actuators,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 53, no. 4, pp. 373–384, 2005.
  • V. Leus and D. Elata, “On the dynamic response of electrostatic MEMS switches,” J. Microelectromech. Syst., vol. 17, no. 1, pp. 236–243, 2008. DOI: 10.1109/JMEMS.2007.908752.
  • P. M. Osterberg and S. D. Senturia, “M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures,” J. Microelectromech. Syst., vol. 6, no. 2, pp. 107–118, 1997. DOI: 10.1109/84.585788.
  • G. Rinaldi, M. Packirisamy and I. Stiharu, “Frequency tuning AFM optical levers using a slot,” Microsyst. Technol., vol. 14, no. 3, pp. 361–369, 2008. DOI: 10.1007/s00542-007-0456-4.
  • E. S. Hung and S. D. Senturia, “Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs,” J. Microelectromech. Syst., vol. 8, no. 3, pp. 280–289, 1999. DOI: 10.1109/84.788632.
  • G. D. Gray, M. J. Morgan and P. A. Kohl, “Electrostatic actuators with expanded tuning range due to biaxial intrinsic stress gradients,” J. Microelectromech. Syst., vol. 13, no. 1, pp. 51–62, 2004. DOI: 10.1109/JMEMS.2003.823231.
  • M. M. Joglekar and D. N. Pawaskar, “Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges,” Struct. Multidisc. Optim., vol. 46, no. 6, pp. 871–890, 2012. DOI: 10.1007/s00158-012-0804-6.
  • R. R. Trivedi, M. M. Joglekar, R. P. Shimpi and D. N. Pawaskar, “Shape Optimization of electrostatically driven microcantilevers using simulated annealing to enhance static travel range,” SPIE Conference Proceedings, vol. 8923, pp. 89234W, 2013. DOI: 10.1117/12.2033784.
  • R. R. Trivedi, D. N. Pawaskar and R. P. Shimpi, “Enhancement of dynamic travel range of electrostatically driven cantilever microbeam using modified particle swarm optimization,” Procedia Eng., vol. 144, pp. 543–550, 2016. DOI: 10.1016/j.proeng.2016.05.040.
  • M. Moghimi Zand and M. T. Ahmadian, “Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., vol. 224, no. 9, pp. 2037–2047, 2010. DOI: 10.1243/09544062JMES1716.
  • M. Moghimi Zand and M. T. Ahmadian, “Application of homotopy analysis method in studying dynamic pull-in instability of microsystems,” Mech. Res. Commun., vol. 36, no. 7, pp. 851–858, 2009. DOI: 10.1016/j.mechrescom.2009.03.004.
  • M. Moghimi Zand, M. T. Ahmadian and B. Rashidian, “Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages,” J. Sound Vib., vol. 325, no. 1–2, pp. 382–396, 2009. DOI: 10.1016/j.jsv.2009.03.023.
  • S. A. Tajalli, M. M. Zand and M. T. Ahmadian, “Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories,” Eur. J. Mech. A. Solids, vol. 28, no. 5, pp. 916–925, 2009. DOI: 10.1016/j.euromechsol.2009.04.003.
  • M. Moghimi Zand, “The dynamic pull-in instability and snap-through behavior of initially curved microbeams,” Mech. Adv. Mater. Struct., vol. 19, no. 6, pp. 485–491, 2012. DOI: 10.1080/15376494.2011.556836.
  • I. I. Hosseini, M. M. Zand and M. Lotfi, “Dynamic pull-in and snap-through behavior in micro/nano mechanical memories considering squeeze film damping,” Microsyst. Technol., vol. 23, no. 5, pp. 1423–1432, 2017. DOI: 10.1007/s00542-016-3026-9.
  • M. Lotfi, M. Moghimi Zand, I. I. Hosseini, M. Baghani and R. Dargazany, “Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams,” Microsyst. Technol., vol. 23, no. 12, pp. 6015–6023, 2017. DOI: 10.1007/s00542-017-3503-9.
  • M. Mojahedi, M. M. Zand and M. T. Ahmadian, “Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method,” Appl. Math. Modell., vol. 34, no. 4, pp. 1032–1041, 2010. DOI: 10.1016/j.apm.2009.07.013.
  • M. Mojahedi, M. Moghimi Zand, M. T. Ahmadian and M. Babaei, “Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges,” Int. J. Str. Stab. Dyn., vol. 11, no. 06, pp. 1119–1137, 2011. DOI: 10.1142/S0219455411004506.
  • H. Daneshpajooh and M. Moghimi Zand, “Semi-analytic solutions to oscillatory behavior of initially curved micro/nano systems,” J. Mech. Sci. Technol., vol. 29, no. 9, pp. 3855–3863, 2015. DOI: 10.1007/s12206-015-0831-5.
  • A. Alipour, M. Moghimi Zand and H. Daneshpajooh, “Analytical solution to nonlinear behavior of electrostatically actuated nanobeams incorporating van der Waals and Casimir forces,” Sci. Iran., vol. 22, no. 3, pp. 1322–1329, 2015.
  • S. Siahpour, M. M. Zand and M. Mousavi, “Dynamics and vibrations of particle-sensing MEMS considering thermal and electrostatic actuation,” Microsyst. Technol., vol. 24, no. 3, pp. 1545–1552, 2018. DOI: 10.1007/s00542-017-3554-y.
  • M. M. Zand and M. T. Ahmadian, “Characterization of coupled-domain multi-layer microplates in pull-in phenomenon, vibrations and dynamics,” Int. J. Mech. Sci., vol. 49, no. 11, pp. 1226–1237, 2007. DOI: 10.1016/j.ijmecsci.2007.03.012.
  • M. M. Zand and M. T. Ahmadian, “Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 4, pp. 1664–1678, 2009. DOI: 10.1016/j.cnsns.2008.05.009.
  • M. Moghimi Zand, B. Rashidian and M. T. Ahmadian, “Contact time study of electrostatically actuated microsystems,” Sci. Iran., vol. 17, no. 5, pp. 348–357, 2010.
  • R. Legtenberg and H. A. C. Tilmans, “Electrostatically driven vacuum-encapsulated polysilicon resonators Part I. Design and fabrication,” Sens. Actuators, A, vol. 45, no. 1, pp. 57–66, 1994. DOI: 10.1016/0924-4247(94)00812-4.
  • K. N. Chen and S. P. Yu, “Shape optimization of micromachined biosensing cantilevers,” 2007 Int. Microsystems, Packaging, Assembly Circuits Technology, pp. 301–304, 2007. DOI: 10.1109/IMPACT.2007.4433622.
  • M. Z. Ansari and C. Cho, “Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors,” Sensors (Basel), vol. 9, no. 8, pp. 6046–6057, 2009. DOI: 10.3390/s90806046.
  • R. Nadal-Guardia, A. Dehe, R. Aigner and L. M. Castaner, “Current drive methods to extend the range of travel of electrostatic microactuators beyond the voltage pull-in point,” J. Microelectromech. Syst., vol. 11, no. 3, pp. 255–263, 2002. DOI: 10.1109/JMEMS.2002.1007404.
  • D. Piyabongkarn, Y. Sun, R. Rajamani, A. Sezen and B. J. Nelson, “Travel range extension of a MEMS electrostatic microactuator,” IEEE Trans. Contr. Syst. Technol., vol. 13, no. 1, pp. 138–145, 2004. DOI: 10.1109/TCST.2004.838572.
  • T. T. Chung, C. C. Lee and K. C. Fan, “Optimum design of a 1 × 2 mechanical optical switch,” Struct Multidisc Optim., vol. 31, no. 3, pp. 229–240, 2006. DOI: 10.1007/s00158-005-0580-7.
  • F. M. Serry, D. Walliser and G. J. Maclay, “The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system,” J. Microelectromech. Syst., vol. 4, no. 4, pp. 193–205, 1995. DOI: 10.1109/84.475546.
  • L. Wen-Hui and Z. Ya-Pu, “Dynamic behaviour of nanoscale electrostatic actuators,” Chin. Phys. Lett.., vol. 20, no. 11, pp. 2070–2073, 2003. DOI: 10.1088/0256-307X/20/11/049.
  • S. S. Rao, Mechanical Vibrations. New York: Pearson Education, Global Edition, 2018.
  • S. P. Timoshenko, Theory of Plates and Shells. New York: McGraw Hill, 1987.
  • R. K. Gupta, “Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems,” Ph.D. Thesis, MIT, Cambridge, MA, 1997.
  • J.-M. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan and A. Q. Liu, “Mechanical design and optimization of capacitive micromachined switch,” Sens. Actuators, A, vol. 93, no. 3, pp. 273–285, 2001. DOI: 10.1016/S0924-4247(01)00662-8.
  • J. N. Israelachvili, Intermolecular and Surface Forces. London, UK: Academic Press, 1992,
  • K. J. Bathe, Finite Element Procedures. Jersey City, NJ: Prentice Hall, 1996,
  • M. M. Joglekar and D. N. Pawaskar, “An efficient numerical scheme to determine the pull-in parameters of an electrostatic micro-actuator with contact type nonlinearity,” ASME Int. Mech. Engineering Congr. Exposition, vol. 11, pp. 483–492, 2007. DOI: 10.1115/IMECE2007-41494.
  • N. R. Aluru and J. White, “An efficient numerical technique for electrochemical simulation of complicated microelectromechanical structures,” Sens. Actuators, A, vol. 58, no. 1, pp. 1–11, 1997. DOI: 10.1016/S0924-4247(97)80218-X.
  • S. Chowdhury, M. Ahmadi and W. C. Miller, “A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams,” J. Micromech. Microeng., vol. 15, no. 4, pp. 756–763, 2005. DOI: 10.1088/0960-1317/15/4/012.
  • A. Ballestra, E. Brusa, M. G. Munteanu and A. Somà, “Experimental characterization of electrostatically actuated in-plane bending of microcantilevers,” Microsyst Technol., vol. 14, no. 7, pp. 909–918, 2008. DOI: 10.1007/s00542-008-0597-0.
  • Y. C. Hu, C. M. Chang and S. C. Huang, “Some design considerations on the electrostatically actuated microstructures,” Sens. Actuators, A, vol. 112, no. 1, pp. 155–161, 2004. DOI: 10.1016/j.sna.2003.12.012.
  • S. Chaterjee and G. Pohit, “A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams,” J. Sound Vib., vol. 322, no. 4-5, pp. 969–986, 2009. DOI: 10.1016/j.jsv.2008.11.046.
  • H. Sadeghian, G. Rezazadeh and P. M. Osterberg, “Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches,” J. Microelectromech. Syst., vol. 16, no. 6, pp. 1334–1340, 2007. DOI: 10.1109/JMEMS.2007.909237.
  • P. V. Dileesh, S. S. Kulkarni and D. N. Pawaskar, “Static and dynamic analysis of electrostatically actuated microcantilevers using the spectral element method,” ASME Engineering Syst. Design Analysis, vol. 44854, pp. 399–408, 2012. DOI: 10.1115/ESDA2012-82536.
  • ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International The Materials Information Company, 1990.
  • J. G. Noel, “Review of the properties of gold material for MEMS membrane applications,” IET Circuits, Devices Syst., vol. 10, no. 2, pp. 156–161, 2016. DOI: 10.1049/iet-cds.2015.0094.
  • COMSOL Inc.: Electrostatically Actuated Cantilever. Version: COMSOL 5.4, 2022.
  • A. Mohsenzadeh, M. Tahani and A. R. Askari, “A novel method for investigating the Casimir effect on pull-in instability of electrostatically actuated fully clamped rectangular nano/microplates,” J. Nanosci., vol. 2015, pp. 1–9, 2015. DOI: 10.1155/2015/328742.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.