Publication Cover
LEUKOS
The Journal of the Illuminating Engineering Society
Volume 17, 2021 - Issue 4
312
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Improved and Robust Spectral Reflectance Estimation

ORCID Icon, , & ORCID Icon
Pages 359-379 | Received 03 Feb 2020, Accepted 16 Jul 2020, Published online: 14 Sep 2020

References

  • AAXA Technologies. 2019. LED projectors versus UHP projectors. Irvine (CA): AAXA Technologies Inc; [accessed 2019 Mar 13]. https://www.aaxatech.com/articles/LEDversusUHP.htm
  • AEON Imaging LLC. 2015. DLM confocal microscope. [accessed 2015 Dec 15]. https://www.aeonimaging.com/dlm-confocal-microscope-technology/.
  • Ali MH, Lyon P, Meerleer PD. 2014. Night vision goggle stimulation using LCoS and DLP projection technology, which is better? Proc SPIE 9086, Display Technologies and Applications for Defense, Security, and Avionics VIII; and Head- and Helmet-Mounted Displays XIX. Paper presented at: International Society for Optics and Photonics; Maryland, US.
  • ANSI IES. 2018. TM-30-18: IES method for evaluating light source color rendition. The Illuminating Engineering Society of North America.
  • Arad B, Ben-Shahar O. 2016. Sparse recovery of hyperspectral signal from natural RGB images. Paper presented at: European Conference on Computer Vision; Amsterdam, Netherlands.
  • Burggraaff O, Schmidt N, Zamorano J, Pauly K, Pascual S, Tapia C, Spyrakos E, Snik F. 2019. Standardized spectral and radiometric calibration of consumer cameras. Opt Express. 27(14):19075–19101.
  • Cao B, Liao NF, Cheng HB. 2017. Spectral reflectance reconstruction from RGB images based on weighting smaller color difference group. Color Res Appl. 42(3):327–332.
  • Chi C, Yoo H, Ben-Ezra M. 2010. Multi-spectral imaging by optimized wide band illumination. Int J Comput Vis. 86(2–3):140–151.
  • Coburn CA, Smith AM, Logie GS, Kennedy P. 2018. Radiometric and spectral comparison of inexpensive camera systems used for remote sensing. Int J Remote Sens. 39(15–16):4869–4890.
  • Dana KJ. 2016. Capturing computational appearance: more than meets the eye. IEEE Signal Process Mag. 33(5):70–80.
  • David A, Fini PT, Houser KW, Ohno Y, Royer MP, Smet KAG, Minchen W, Whitehead L. 2015. Development of the IES method for evaluating the color rendition of light sources. Opt Express. 23(12):15888–15906.
  • de Miguel AS, Kyba CC, Aubé M, Zamorano J, Cardiel N, Tapia C, Bennie J, Gaston KJ. 2019. Colour remote sensing of the impact of artificial light at night (I): the potential of the international space station and other DSLR-based platforms. Remote Sens Environ. 224:92–103.
  • Deb K. 2000. An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng. 186(2–4):311–338.
  • Deeb R, Van de Weijer J, Muselet D, Hebert M, Tremeau A. 2019. Deep spectral reflectance and illuminant estimation from self-interreflections. J Opt Soc Am A. 36(1):105–114.
  • Delica S, Blanca CM. 2007. Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination. Appl Opt. 46(29):7237–7243.
  • Diaz D, Regalado G, Trono T. 2010. Familiarization with properties of light sources. [accessed 2010 Aug 10]. https://colorscience.wordpress.com/2010/08/07/2-familiarization-of-light-sources/
  • Dixon EL, Shapiro AG. 2017. Spatial filtering, color constancy, and the color-changing dress. J Vision. 17(3):7,1–20.
  • Durmus D, Abdalla D, Duis A, Davis W. 2020. Spectral optimization to minimize light absorbed by artwork. Leukos. 16(1):45–54.
  • Durmus D, Davis W. 2015. Optimising light source spectrum for object reflectance. Opt Express. 23(11):A456–A464.
  • Durmus D, Davis W. 2018. Appearance of achromatic colors under optimized light source spectrum. IEEE Photonics J. 10(6):1–11.
  • Filip J, Vavra R, Havlicek M, Krupicka M. 2017. Predicting visual perception of material structure in virtual environments. Comput Graph Forum. 36(1):89–100.
  • Foi A, Trimeche M, Katkovnik V, Egiazarian K. 2008. Practical poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE Trans Image Process. 17(10):1737–1754.
  • Fu X, Liao Y, Zeng D, Huang Y, Zhang XP, Ding X. 2015. A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans Image Process. 24(12):4965–4977.
  • Fu Y, Zhang T, Zheng Y, Zhang D, Huang H. 2018. Joint camera spectral sensitivity selection and hyperspectral image recovery. European Conference on Computer Vision; Munich, Germany.
  • Georgoulis S, Rematas K, Ritschel T, Gavves E, Fritz M, Gool LV, Tuytelaars T. 2017. Reflectance and natural illumination from single-material specular objects using deep learning. IEEE Trans Pattern Anal Mach Intell. 40(8):1932–1947.
  • Grusche S, Theilmann F. 2015. An RGB approach to extraordinary spectra. Eur J Phys. 36(5):055018.
  • Han S, Sato I, Okabe T, Sato Y. 2013. Fast spectral reflectance recovery using DLP projector. Int J Comput Vis. 110(2):172–184.
  • Hardeberg JY. 2004. Filter selection for multispectral color image acquisition. J Imaging Sci Technol. 48(2):105–110.
  • Hasinoff SW. 2014. Photon, poisson noise. In: Ikeuchi K, editor. Computer vision: a reference guide. Boston (MA): Springer US; p. 608–610.
  • Healey G. 1991. Estimating spectral reflectance using highlights. Image Vis Comput. 9(5):333–337.
  • Healey G, Kondepudy R. 1994. Radiometric CCD camera calibration and noise estimation. IEEE Trans Pattern Anal Mach Intell. 16(3):267–276.
  • Heikkinen V. 2018. Spectral reflectance estimation using gaussian processes and combination kernels. IEEE Trans Image Process. 27(7):3358–3373.
  • Heikkinen V, Cámara C, Hirvonen T, Penttinen N. 2016. Spectral imaging using consumer-level devices and kernel-based regression. J Opt Soc Am A. 33(6):1095–1110.
  • Heikkinen V, Lenz R, Jetsu T, Parkkinen J, Hauta-Kasari M, Jääskeläinen T. 2008. Evaluation and unification of some methods for estimating reflectance spectra from RGB images. J Opt Soc Am A. 25(10):2444–2458.
  • Jiang J, Gu J. 2012. Recovering spectral reflectance under commonly available lighting conditions. Paper presented at: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops; Providence, US.
  • Jiang J, Liu D, Gu J, Süsstrunk S. 2013. What is the space of spectral sensitivity functions for digital color cameras? Paper presented at: IEEE Workshop on Applications of Computer Vision (WACV); Florida, US.
  • Khan R, Joost VDW, Karatzas D, Muselet D. 2013. Towards multispectral data acquisition with hand-held devices. Paper presented at: IEEE International Conference on Image Processing; Melbourne, Australia.
  • l’Eclairage CId. 2005. Colormetry. Vienna (Austria). Technical Report, CIE 15 No.
  • Lam A, Subpa-Asa A, Sato I, Okabe T, Sato Y. 2013. Spectral imaging using basis lights. Paper presented at: British Machine Vision Conference; Bristol, UK.
  • Li C, Ronnier Luo M, Li C, Cui G. 2012. The CRI-CAM02UCS colour rendering index. Color Res Appl. 37(3):160–167.
  • Li S-X. 2018. Filter selection for optimizing the spectral sensitivity of broadband multispectral cameras based on maximum linear independence. Sensors. 18(5):1455.
  • Liang J, Xiao K, Pointer MR, Wan X, Li C. 2019. Spectra estimation from raw camera responses based on adaptive local-weighted linear regression. Opt Express. 27(4):5165–5180.
  • Liu C, Szeliski R, Kang SB, Zitnick CL, Freeman WT. 2008. Automatic estimation and removal of noise from a single image. IEEE Trans Pattern Anal Mach Intell. 30(2):299–314.
  • Liu Z, Liu Q, Gao GA, Li C. 2017. Optimized spectral reconstruction based on adaptive training set selection. Opt Express. 25(11):12435–12445. English. doi:10.1364/OE.25.012435.
  • Liu Z, Wan XX, Huang XG, Liu Q, Li C. 2013. The study on spectral reflectance reconstruction based on wideband multi-spectral acquisition system. Spectrosc Spect Anal. 33(4):1076.
  • Maloney LT, Wandell BA. 1986. Color constancy - A method for recovering surface spectral reflectance. J Opt Soc Am A-Opt Image Sci Vis. 3(1):29–33.
  • Nahavandi AM, Tehran MA. 2017. A new manufacturable filter design approach for spectral reflectance estimation. Color Res Appl. 42(3):316–326.
  • Ng D-Y, Allebach JP. 2006. A subspace matching color filter design methodology for a multispectral imaging system. IEEE Trans Image Process. 15(9):2631–2643.
  • Nguyen RMH, Prasad DK, Brown MS. 2014 Sep 6–12. Training-based spectral reconstruction from a single RGB image. 13th European Conference on Computer Vision; Cham, Switzerland.
  • Nie S, Gu L, Zheng Y, Lam A, Ono N, Sato I. 2018. Deeply learned filter response functions for hyperspectral reconstruction. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; Salt Lake City, US.
  • Oh SW, Brown MS, Pollefeys M, Kim SJ. 2016. Do it yourself hyperspectral imaging with everyday digital cameras. Paper presented at: IEEE Conference on Computer Vision and Pattern Recognition; New York, US.
  • Ohno Y. 2005. Spectral design considerations for white LED color rendering. Opt Eng. 44(11):111302.
  • Ohno Y, Blattner P. 2014. Chromaticity difference specification for light sources. Int Commission Illumination, Tech Rep CIE TN. 1:2014.
  • Ohta N. 1997. The basis of color reproduction engineering. Japan: Coronasha Complete listings.
  • Oxholm G, Nishino K. 2016. Shape and reflectance estimation in the wild. IEEE Trans Pattern Anal Mach Intell. 38(2):376–389.
  • Packer O, Diller LC, Verweij J, Lee BB, Pokorny J, Williams DR, Dacey DM, Brainard DH. 2001. Characterization and use of a digital light projector for vision research. Vision Res. 41(4):427–439.
  • Park JI, Lee MH, Grossberg MD, Nayar SK. 2007. Multispectral imaging using multiplexed illumination. IEEE 11th International Conference on Computer Vision. p. 1–8.
  • Perlova T. 2014. Measured LightCrafter LED spectra. [accessed 2014 Feb 21]. https://e2e.ti.com/support/dlp__mems_micro-electro-mechanical_systems/advanced_light_control/f/850/t/323184.
  • Prucnal PR, Saleh BEA. 1981. Transformation of image-signal-dependent noise into image-signal-independent noise. Opt Lett. 6(7):316–318.
  • Quattoni A, Torralba A. 2009. Recognizing indoor scenes. Paper presented at:  IEEE Conference on Computer Vision and Pattern Recognition; Florida, US.
  • Raypah ME, Devarajan M, Sulaiman F. 2017. Modeling spectra of low-power SMD LEDs as a function of ambient temperature. IEEE Trans Electron Devices. 64(3):1180–1186.
  • Samson EC, Blanca CM. 2007. Dynamic contrast enhancement in widefield microscopy using projector-generated illumination patterns. New J Phys. 9:363.
  • Schubert EF, Kim JK. 2005. Solid-state light sources getting smart. Science. 308(5726):1274–1278.
  • Sharma G, Trussell HJ. 1997. Figures of merit for color scanners. IEEE Trans Image Process. 6(7):990–1001.
  • Shen J, Chang S, Wang H, Zheng Z. 2019. Optimising the illumination spectrum for enhancing tissue visualisation. Light Res Tech. 51(1):99–110.
  • Shimano N. 2006. Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the presence of noise. Opt Eng. 45(1):013201.
  • Shrestha R, Mansouri A, Hardeberg JY. 2011. Multispectral imaging using a stereo camera: concept, design and assessment. EURASIP J Adv Signal Process. 2011(1):57.
  • Smet KAG, David A, Whitehead L. 2016. Why color space uniformity and sample set spectral uniformity are essential for color rendering measures. LEUKOS. 12(1–2):39–50.
  • Smet KAG, Schanda J, Whitehead L, Luo RM. 2013. CRI2012: A proposal for updating the CIE colour rendering index. Light Res Tech. 45(6):689–709. English. doi:10.1177/1477153513481375.
  • Specim SIL. 2018. Specim FX series. [accessed 2019]. http://www.specim.fi/fx/#1478603793717-9356cb24-923f.
  • Stirman JN, Crane MM, Husson SJ, Gottschalk A, Lu H. 2012. A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents. Nat Protoc. 7(2):207–220.
  • Tominaga S. 1996. Multichannel vision system for estimating surface and illumination functions. J Opt Soc Am A-Opt Image Sci Vis. 13(11):2163–2173.
  • Tominaga S, Okajima R. 2000. Object recognition by multi-spectral imaging with a liquid crystal filter. Paper presented at: 15th International Conference on Pattern Recognition; Barcelona, Spain.
  • Trussell J. 2011. System and method for estimating projector primary spectra using rgb measurement. Google Patents.
  • Tu GJ, Karstoft H, Pedersen LJ, Jørgensen E. 2015. Illumination and reflectance estimation with its application in foreground detection. Sensors. 15(9):21407–21426.
  • Urban P, Rosen MR, Berns RS. 2009. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation. J Opt Soc Am A. 26(8):1865–1875.
  • Vora PL, Trussell HJ. 1993. Measure of goodness of a set of color-scanning filters. J Opt Soc Am A. 10(7):1499–1508.
  • Wang H, Cuijpers RH, Vogels I, Luo MR, Heynderickx I, Zheng Z. 2018. Optimising the illumination spectrum for tissue texture visibility. Light Res Tech. 50(5):757–771.
  • Wang X, Thomas J-B, Hardeberg JY, Gouton P. 2014. Multispectral imaging: narrow or wide band filters? International Colour Association. 12:44–51.
  • Xiao K, Zhu Y, Li C, Connah D, Yates JM, Wuerger S. 2016. Improved method for skin reflectance reconstruction from camera images. Opt Express. 24(13):14934–14950.
  • Xie B, Hu R, Luo XB. 2016. Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives. J Electron Packag. 138(2):020803.
  • Xie B, Zhang J, Chen W, Hao J, Cheng Y, Hu R, Wu D, Wang K, Luo X. 2017. Realization of wide circadian variability by quantum dots-luminescent mesoporous silica-based white light-emitting diodes. Nanotechnology. 28(42):425204.
  • Xing X, Dong W, Zhang X, and Paul J. 2010. Spectrally-based single image relighting. Paper presented at: International Conference on Technologies for E-Learning and Digital Entertainment; Changchun, China
  • Xu G-Q, Zhang J-H, Cao G-Y, Xing M-S, Li D-S, Yu -J-J. 2017. Solar spectrum matching using monochromatic LEDs. Light Res Tech. 49(4):497–507.
  • Zhang JJ, Hu R, Xie B, Yu X, Luo X, Yu Z, Zhang L, Wang H, Jin X. 2017a. Energy-saving light source spectrum optimization by considering object’s reflectance. IEEE Photonics J. 9(2):8200311.
  • Zhang JJ, Hu R, Yu X, Xie B, Luo X. 2017b. Spectral optimization based simultaneously on color-rendering index and color quality scale for white LED illumination. Opt Laser Tech. 88:161–165.
  • Zhang JJ, Smet KAG, Meuret Y. 2019. Tuning color and saving energy with spatially variable laser illumination. Opt Express. 27(19):27136–27150.
  • Zhang JJ, Zhang T, Liu SS, Yuan SD, Jin YF, Yang S. 2013. Feasibility analysis of junction temperature measurement for GaN-based high-power white LEDs by the peak-shift method. Chin Opt Lett. 11(9):091204.
  • Zhang X, Wang Q, Li J, Zhou X, Yang Y, Xu H. 2017. Estimating spectral reflectance from camera responses based on CIE XYZ tristimulus values under multi-illuminants. Color Res Appl. 42(1):68–77.
  • Zhang X, Xu H. 2008. Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis. J Opt Soc Am A. 25(2):371–378.
  • Zhao H, Kawakami R, Tan RT, Ikeuchi K. 2009. Estimating basis functions for spectral sensitivity of digital cameras. Paper presented at: Meeting on image recognition and understanding; Matsue, Japan.
  • Zhao Y, Yun F, Feng L, Wang S, Li Y, Su X, Guo M, Ding W, Zhang Y. 2017. Improving peak-wavelength method to measure junction temperature by dual-wavelength LEDs. IEEE Access. 5(99):11712–11716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.