Publication Cover
LEUKOS
The Journal of the Illuminating Engineering Society
Volume 19, 2023 - Issue 4
330
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Continuous Overcast Daylight Autonomy (DAo.con): A New Dynamic Metric for Sensor-Less Lighting Smart Controls

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 343-367 | Received 28 Feb 2022, Accepted 08 Oct 2022, Published online: 19 Jan 2023

References

  • Acosta I, Campano MA, Dominguez-Amarillo S, Muñoz C. 2018. Dynamic daylight metrics for electricity savings in offices: window size and climate smart lighting management. Energies. 11(11):3143.
  • Acosta I, Campano MA, Domínguez S, Fernández-Agüera J. 2019. Minimum daylight autonomy: a new concept to link daylight dynamic metrics with daylight factors. LEUKOS - J Illum Eng Soc North Am. 1–19.
  • Acosta I, Campano MA, Molina JF. 2016. Window design in architecture: analysis of energy savings for lighting and visual comfort in residential spaces. Appl Energy. 168:493–506.
  • Acosta I, Munoz C, Campano MA, Navarro J. 2015a. Analysis of daylight factors and energy saving allowed by windows under overcast sky conditions. Renew Energy. 77(1):194–207.
  • Acosta I, Munoz C, Esquivias P, Moreno D, Navarro J. 2015b. Analysis of the accuracy of the sky component calculation in daylighting simulation programs. Sol Energy. 119:54–67.
  • Acosta I, Navarro J, Sendra JJ. 2013a. Towards an analysis of the performance of lightwell skylights under overcast sky conditions. Energy Build. 64. doi:10.1016/j.enbuild.2013.04.009
  • Acosta I, Navarro J, Sendra JJ. 2013b. Predictive method of the sky component in a courtyard under overcast sky conditions. Sol Energy. 89:89–99.
  • Acosta I, Navarro J, Sendra JJ. 2015c. Towards an Analysis of the Performance of Monitor Skylights under Overcast Sky Conditions. Energy Build. 88:248–261.
  • Acosta I, Navarro J, Sendra JJ, Esquivias P. 2012. Daylighting design with lightscoop skylights: towards an optimization of proportion and spacing under overcast sky conditions. Energy Build. 49:394–401.
  • Anand P, Cheong D, Sekhar C, Santamouris M, Kondepudi S. 2019. Energy saving estimation for plug and lighting load using occupancy analysis. Renew Energy. 143:1143–1161.
  • Association Suisse des Electriciens. 1989. Éclairage Intérieur Par La Lumière Du Jour - Swiss Norm SN 418911. Geneva (Switzerland): Association Suisse des Electriciens, Ed.
  • Bartzokas A, Kambezidis HD, Darula S, Kittler R. 2005. Comparison between winter and summer sky-luminance distribution in central Europe and in the eastern Mediterranean. J Atmos Solar-Terrestrial Phys. 67(7):709–718.
  • Beccali M, Bonomolo M, Ciulla G, Lo Brano V. 2018. Assessment of indoor illuminance and study on best photosensors’ position for design and commissioning of daylight linked control systems. A new method based on artificial neural networks. Energy. 154:466–476.
  • Bellia L, Acosta I, Campano MA, Fragliasso F. 2020. Impact of daylight saving time on lighting energy consumption and on the biological clock for occupants in office buildings. Sol Energy. 211(September):1347–1364.
  • Bellia L, Fragliasso F. 2017. New parameters to evaluate the capability of a daylight-linked control system in complementing daylight. Build Environ. 123:223–242.
  • Bellia L, Fragliasso F. 2019. Automated daylight-linked control systems performance with illuminance sensors for side-lit offices in the mediterranean area. Autom Constr. 100(July 2018):145–162.
  • Bellia L, Fragliasso F, Stefanizzi E. 2016. Why are daylight-linked controls (DLCs) Not so spread? A literature review. Build Environ. 106:301–312.
  • Bellia L, Pedace A, Fragliasso F. 2015. The impact of the software’s choice on dynamic daylight simulations’ results: a comparison between daysim and 3ds max design®. Sol Energy. 122:249–263.
  • Boyce PR. 2010. The impact of light in buildings on human health. Indoor Built Environ. 19:8–20.
  • Campano MÁ, Acosta I, Domínguez S, López-Lovillo R. 2022. Dynamic analysis of office lighting smart controls management based on user requirements. Autom Constr. 133. doi:10.1016/j.autcon.2021.104021
  • Campano MAA, Acosta I, Leó AL, León AL, Calama C. 2018. Validation study for daylight dynamic metrics by using test cells in mediterranean area. Int J Eng Technol. 10(6):487–491.
  • Choi H, Hong S, Choi A, Sung M. 2016. Toward the accuracy of prediction for energy savings potential and system performance using the daylight responsive dimming system. Energy Build. 133:271–280.
  • CIE. 2011. CIE S 017:2011 - international lighting vocabulary; Commission Internationale de l’Éclairage. Vienna (Austria): Commission Internationale de l’Éclairage.
  • CIE 110-1994: Spatial Distribution of Daylight - Luminance Distributions of Various Reference Skies. Vienna (Austria): Commission Internationale de l’Éclairage, Ed.
  • CIE S 011/E: 2003: Spatial Distribution of Daylight - CIE Standard General Sky. 2003. Vienna (Austria): Commission Internationale de l’Éclairage.
  • Darula S, Kittler R. 2002. CIE general sky standard defining luminance distributions. In: International building performance simulation association (IBPSA). Montreal (QC (Canada), QC (Canada)); p. 11–13.
  • De Rosa A, Ferraro V, Kaliakatsos D, Marinelli V. 2010. Calculating indoor natural illuminance in overcast sky conditions. Appl Energy. 87(3):806–813.
  • Doulos L, Tsangrassoulis A, Topalis FV. 2014. Multi-Criteria decision analysis to select the optimum position and proper field of view of a photosensor. Energy Convers Manag. 86:1069–1077.
  • Du J, Sharples S. 2011. Assessing and predicting average daylight factors of adjoining spaces in atrium buildings under overcast sky. Build Environ. 46(11):2142–2152.
  • Esquivias P, Munoz C, Acosta I, Moreno D, Navarro J. 2016. Climate-Based daylight analysis of fixed shading devices in an open-plan office. Light Res Technol. 48(2):205–220.
  • Fernandes LL, Lee ES, Dibartolomeo DL, McNeil A. 2014. Monitored lighting energy savings from dimmable lighting controls in the new york times headquarters building. Energy Build. 68(PARTA):498–514.
  • Galatioto A, Beccali M. 2016. Aspects and issues of daylighting assessment: a review study. Renew Sustain Energy Rev. 66:852–860.
  • IESNA. 2011. DiLaura D, Houser K, Mistrick R, Steffy G, Eds. Lighting handbook 10h Edition. 10th ed. New York (USA): Illuminating Engineering Society of North America.
  • IESNA. 2013. IES spatial daylight autonomy (SDA) and annual sunlight exposure (ASE). New York (USA): America, I. E. S. of N., Ed.
  • Igawa N, Koga Y, Matsuzawa T, Nakamura H. 2004. Models of sky radiance distribution and sky luminance distribution. Sol Energy. 77(2):137–157.
  • ISO. 2012. UNE-EN 12464-1:2012, light and lighting - lighting of work places - part 1: indoor work places. Geneva (Switzerland): International Standarisation Office.
  • ISO. 2019. UNE-EN 15193-1:2019, energy performance of buildings - energy requirements for lighting - part 1: specifications, module M9. Geneva (Switzerland): International Standarisation Office.
  • ISO. 2020. UNE-EN 17037:2020, daylight in buildings. Geneva (Switzerland): International Standarisation Office.
  • Karayel M, Navvab M, Ne’eman E, Selkowitz S. 1984. Zenith luminance and sky luminance distributions for daylighting calculations. Energy Build. 6(3):283–291.
  • Kim C-H, Kim K-S. 2019. Development of sky luminance and daylight illuminance prediction methods for lighting energy saving in office buildings. Energies. 12(4):592.
  • Kittler R, Darula S. 2001. Scattering indicatrix : a primary characteristic of light diffusion for sky pattern models. Build Res J. 49(4):273–285.
  • Kittler R, Darula S. 2017. The new generation of an artificial sky: simulating various overcast sky conditions. In: Lux Europa 2017. Ljubljana (Slovenia); p. 401–406.
  • Lamm LO. 1981. A new analytic expression for the equation of time. Sol Energy. 26(5):465.
  • Larsen OK, Jensen RL, Antonsen T, Strømberg I. 2017. Estimation methodology for the electricity consumption with daylight- and occupancy-controlled artificial lighting. Energy Procedia. 122:733–738.
  • LBNL. 2012. Lawrence berkeley national laboratory technical report (2012) 1278 - energyplus engineering reference. The Reference to EnergyPlus Calculations. Lawrence Berkeley National Laboratory.
  • León-Rodríguez AL, Suárez R, Bustamante P, Campano MA, Moreno-Rangel D. 2017. Design and performance of test cells as an energy evaluation model of facades in a mediterranean building area. Energies. 10(11):1816.
  • Leslie RP, Radetsky LC, Smith AM. 2012. Conceptual design metrics for daylighting. Light Res Technol. 44(3):277–290.
  • Li DHW, Cheung ACK, Chow SKH, Lee EWM. 2014. Study of daylight data and lighting energy savings for atrium corridors with lighting dimming controls. Energy Build. 72(February 2012):457–464.
  • Li DHW, Lau CCS, Lam JC. 2004. Overcast sky conditions and luminance distribution in Hong Kong. Build Environ. 39(1):101–108.
  • Lo Verso VRM, Pellegrino A. 2019. Energy Saving Generated through Automatic Lighting Control Systems According to the Estimation Method of the Standard EN 15193-1. J Daylighting. 6(2):131–147.
  • Mangione A, Mattoni B, Bisegna F, Iatauro D, Zinzi M On the validity of daylight factor for evaluating the energy performance of building. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy; 2018; p. 1–4. doi:10.1109/EEEIC.2018.8494450.
  • Mardaljevic J. 1995. Validation of a lighting simulation program under real sky conditions. Light Res Technol. 27:181–188.
  • Meeus J. 1991. Astronomical formulae for calculators. Richmond (Virginia (USA), Virginia (USA)): Willman-Bell.
  • Moon P, Spencer DE. 1942. Illumination from a non-uniform sky. Illum Eng. 37:707–726.
  • Munoz CM, Esquivias PM, Moreno D, Acosta I, Navarro J. 2014. Climate-Based daylighting analysis for the effects of location, orientation and obstruction. Light Res Technol. 46:3.
  • Nabil A, Mardaljevic J. 2005. Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Light Res Technol. 37(1):41–57.
  • Nabil A, Mardaljevic J. 2006. Useful daylight illuminances: a replacement for daylight factors. Energy Build. 38(7):905–913.
  • Nakamura H, Oki M, Hayashi Y. 1985. Luminance distribution of intermediate sky. J Light Vis Environ. 9(1):6–13.
  • Nakamura H, Oki M, Hayashi Y, Iwata T The mean sky composed depending on the absolute luminance values of the sky element and application to the daylighting prediction. In Proceedings of international daylighting conference; 1986; Long Beach (USA), p. 61–66.
  • Perez R, Seals R, Michalsky J. 1993. All-Weather model for sky luminance distribution-preliminary configuration and validation. Sol Energy. 50(3):235–245.
  • Pitel IJ. 1985. Emerging lighting control technologies: the alternatives and trade-offs. J Illum Eng Soc. 14(2):624–632.
  • Reinhart CF, Breton P-F. 2009. Experimental validation of autodesk® 3ds max® design 2009 and daysim 3.0. LEUKOS - J Illum Eng Soc North Am. 6(1):7–35.
  • Reinhart CF, Mardaljevic J, Rogers Z. 2006. Dynamic daylight performance metrics for sustainable building design. LEUKOS - J Illum Eng Soc North Am. 3(1):7–31.
  • Roisin B, Bodart M, Deneyer A, D’Herdt P. 2008. Lighting energy savings in offices using different control systems and their real consumption. Energy Build. 40(4):514–523.
  • Ryckaert WR, Lootens C, Geldof J, Hanselaer P. 2010. Criteria for energy efficient lighting in buildings. Energy Build. 42(3):341–347.
  • Shishegar N, Boubekri M. 2017. Quantifying electrical energy savings in offices through installing daylight responsive control systems in hot climates. Energy Build. 153:87–98.
  • Soler A, Gopinathan KK, Claros ST. 2001. Study on zenith luminance on Madrid overcast skies. Renew Energy. 23(1):49–55.
  • Soori PK, Vishwas M. 2013. Lighting control strategy for energy efficient office lighting system design. Energy Build. 66:329–337.
  • Tregenza P. 2014. Opinion: climate-based daylight modelling or daylight factor? Light Res Technol. 46(6):618.
  • Xu W, Wei M, Smet KAG, Lin Y. 2017. The prediction of perceived colour differences by colour fidelity metrics. Light Res Technol. 49(7):805–817.
  • Yun GY, Kim H, Kim JT. 2012. Effects of occupancy and lighting use patterns on lighting energy consumption. Energy Build. 46:152–158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.