2,290
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nutritional intake and anthropometric characteristics are associated with endurance performance and markers of low energy availability in young female cross-country skiers

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Article: 2226639 | Received 17 Oct 2022, Accepted 12 Jun 2023, Published online: 21 Jun 2023

References

  • Mountjoy, M, Sundgot-Borgen, JK, Burke, LM, et al. IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br J Sports Med. 2018;52(11):687–519. doi: 10.1136/bjsports-2018-099193
  • Heikura, IA, Stellingwerff, T, Areta, JL. Investigating the effect of bouncing type on the physiological demands of trampolining. Eur J Sport Sci. 2021;21(1):1–6. doi: 10.1080/17461391.2020.1721564
  • Loucks, AB, Kiens, B, Wright, HH. Energy availability in athletes. J Sports Sci. 2011;29(sup1):S7–S15. doi: 10.1080/02640414.2011.588958
  • Logue, DM, Madigan, SM, Melin, A, et al. Low energy availability in athletes 2020: an updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance. Nutr. 2020;12(3):1–19. doi: 10.3390/nu12030835
  • Heikura, IA, Kettunen, O, Garthe, I, et al. Energetic demands and nutritional strategies of elite cross-country skiers during tour de Ski: a narrative review. J Sci Sport Exerc. 2021;3(3):224–237. doi: 10.1007/s42978-020-00105-x
  • Jones, TW, Lindblom, HP, Karlsson, Ø, et al. Anthropometric, physiological, and performance developments in cross-country skiers. Med Sci Sports Exercise. 2021;53(12):2553–2564. doi: 10.1249/MSS.0000000000002739
  • Burke, LM, Hawley, JA, Wong, SHS, et al. Carbohydrates for training and competition carbohydrates for training and competition. J Sports Sci. 2011;29(sup1):S17–S27. doi: 10.1080/02640414.2011.585473
  • Hawley, JA, Leckey, JJ. Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med. 2015;45(S1):5–12. doi: 10.1007/s40279-015-0400-1
  • Burke, LM, Van Loon, LJC, Hawley, JA. Postexercise muscle glycogen resynthesis in humans. J Appl Physiol. 2017;122(5):1055–1067. doi: 10.1152/japplphysiol.00860.2016
  • Carr, A, Mcgawley, K, Govus, A, et al. Nutritional intake in elite cross-country skiers during two days of training and competition. Int J Sport Nutr Exerc Metab. 2019;29(3):273–281. doi: 10.1123/ijsnem.2017-0411
  • Kettunen, O, Heikkilä, M, Linnamo, V, et al. Nutrition knowledge is associated with energy availability and carbohydrate intake in young female cross-country skiers. Nutr. 2021;13(6):1769. doi: 10.3390/nu13061769
  • Thomas, DT, Erdman, KA, Burke, LM. American college of sports medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exercise. 2016;48(3):543–568. doi: 10.1249/MSS.0000000000000852
  • Nose-Ogura, S, Yoshino, O, Dohi, M, et al. Risk factors of stress fractures due to the female athlete triad: differences in teens and twenties. Scand J Med Sci Sports. 2019;29(10):1501–1510. doi: 10.1111/sms.13464
  • Moore, DR, Sygo, J, Morton, JP. Fuelling the female athlete: carbohydrate and protein recommendations. Eur J Sport Sci. 2021;22(5):684–696. doi: 10.1080/17461391.2021.1922508
  • Sandbakk, Ø, Holmberg, HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12(8):1003–1011. doi: 10.1123/ijspp.2016-0749
  • Melin, A, Tornberg, ÅB, Skouby, S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540–545. doi: 10.1136/bjsports-2013-093240
  • Bosco, C, Mognoni, P, Luhtanen, P. Relationship between isokinetic performance and ballistic movement. Eur J Appl Physiol. 1983;51(3):357–364. doi: 10.1007/BF00429072
  • Linthorne, NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):1198–1204. doi: 10.1119/1.1397460
  • Balke, B, Ware, R. An experimental study of physical fitness of air force personnel. U S Armed Forces Med J. 1959;10:675–688.
  • Capling, L, Beck, KL, Gifford, JA, et al. Validity of dietary assessment in athletes: a systematic review. Nutr. 2017;9(12):1313. doi: 10.3390/nu9121313
  • Weir, JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1–9. doi: 10.1113/jphysiol.1949.sp004363
  • Tomten, SE, Høstmark, AT. Energy balance in weight stable athletes with and without menstrual disorders. Scand J Med Sci Sports. 2006;16(2):127–133. doi: 10.1111/j.1600-0838.2005.00451.x
  • Cunningham, JJ. Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clinic Nutr. 1991;54(6):963–969. doi: 10.1093/ajcn/54.6.963
  • Areta, JL, Taylor, HL, Koehler, K. Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Eur J Appl Physiol. 2021;121(1):1–21. doi: 10.1007/s00421-020-04516-0
  • Nattiv, A, Loucks, AB, Manore, MM, et al. The female athlete triad. Med Sci Sports Exercise. 2007;39:1867–1882.
  • Cohen, J. Statistical power analysis for the behavioral sciences. 2nd ed. Hilsdale, NJ: Lawrence Earlbaum Associates; 1988.
  • Loucks, AB, Thuma, JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311. doi: 10.1210/jc.2002-020369
  • Ihle, R, Loucks, AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–1240. doi: 10.1359/JBMR.040410
  • Burke, LM, Lundy, B, Fahrenholtz, IL, et al. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):350–363. doi: 10.1123/ijsnem.2018-0142
  • Elliott-Sale, KJ, Tenforde, AS, Parziale, AL, et al. Endocrine effects of relative energy deficiency in sport. Int J Sport Nutr Exerc Metab. 2018;28(4):335–349. doi: 10.1123/ijsnem.2018-0127
  • Nieman, DC, Mitmesser, SH. Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutr. 2017;9(5):513–523. doi: 10.3390/nu9050513
  • Meeusen, R, Duclos, M, Foster, C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European college of sport science and the American college of sports medicine. Med Sci Sports Exercise. 2013;45:186–205.
  • Phillips, SM, van Loon, LJC. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(sup1):S29–S38. doi: 10.1080/02640414.2011.619204
  • Churchward-Venne, TA, Pinckaers, PJM, Smeets, JSJ, et al. Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. Am J Clin Nutr. 2020:1–15.
  • Macnaughton, LS, Wardle, SL, Witard, OC, et al. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15):1–13. doi: 10.14814/phy2.12893
  • Desbrow, B, Burd, NA, Tarnopolsky, M, et al. Nutrition for special populations: young, female, and masters athletes. Int J Sport Nutr Exerc Metab. 2019;29(2):220–227. doi: 10.1123/ijsnem.2018-0269
  • Areta, JL, Burke, LM, Camera, DM, et al. Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol Endocrinol Metab. 2014;306(8):E989–E997. doi: 10.1152/ajpendo.00590.2013
  • Gillen, JB, West, DWD, Williamson, EP, et al. Low-carbohydrate training increases protein requirements of endurance athletes. Med Sci Sports Exercise. 2019;51(11):2294–2301. doi: 10.1249/MSS.0000000000002036
  • Hegge, AM, Bucher, E, Ettema, G, et al. Gender differences in power production, energetic capacity and efficiency of elite cross-country skiers during whole-body, upper-body, and arm poling. Eur J Appl Physiol. 2016;116(2):291–300. doi: 10.1007/s00421-015-3281-y
  • Sandbakk, Ø, Hegge, AM, Losnegard, T, et al. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exercise. 2016;48(6):1091–1100. doi: 10.1249/MSS.0000000000000862
  • Vanheest, JL, Rodgers, CD, Mahoney, CE, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exercise. 2014;46(1):156–166. doi: 10.1249/MSS.0b013e3182a32b72
  • Heikura, IA, Stellingwerff, T, Bergland, D, et al. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):403–411. doi: 10.1123/ijsnem.2017-0313
  • Talsnes, RK, Solli, GS, Kocbach, J, et al. Laboratory- and field-based performance-predictions in cross-country skiing and roller-skiing. Plos One. 2021;16(8):1–17. doi: 10.1371/journal.pone.0256662