17,956
Views
0
CrossRef citations to date
0
Altmetric
Review

Common questions and misconceptions about caffeine supplementation: what does the scientific evidence really show?

ORCID Icon, , ORCID Icon, , , , , , , , , , , , , , , ORCID Icon, & ORCID Icon show all
Article: 2323919 | Received 04 Dec 2023, Accepted 17 Feb 2024, Published online: 11 Mar 2024

References

  • Liguori, A, Hughes, JR, Grass, JA. Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacol Biochem Behav. 1997;58(3):721–221. doi: 10.1016/S0091-3057(97)00003-8
  • Arnaud, MJ. The pharmacology of caffeine. Prog Drug Res. 1987;31:273–313.
  • Brachtel, D, Richter, E. Absolute bioavailability of caffeine from a tablet formulation. J Hepatol. 1992;16(3):385. doi: 10.1016/S0168-8278(05)80676-2
  • Stavric, B. Methylxanthines: toxicity to humans. 2. Caffeine. Food Chem Toxicol. 1988;26(7):645–662. doi: 10.1016/0278-6915(88)90236-0
  • Nehlig, A, Daval, JL, Debry, G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev. 1992;17(2):139–70. doi: 10.1016/0165-0173(92)90012-B
  • Fiani, B, Zhu, L, Musch, BL, et al. The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus. 2021;13:e15032. doi: 10.7759/cureus.15032
  • Collado-Mateo, D, Lavín-Pérez, AM, Merellano-Navarro, E, et al. Effect of acute caffeine intake on the fat oxidation rate during exercise: a systematic review and meta-analysis. Nutrients. 2020;12(12):3603. doi: 10.3390/nu12123603
  • Ruiz-Moreno, C, Gutiérrez-Hellín, J, Amaro-Gahete, FJ, et al. Caffeine increases whole-body fat oxidation during 1 h of cycling at fatmax. Eur J Nutr. 2021;60(4):2077–2085. doi: 10.1007/s00394-020-02393-z
  • Guest, NS, VanDusseldorp, TA, Nelson, MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1. doi: 10.1186/s12970-020-00383-4
  • Maughan, RJ, Griffin, J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16(6):411–420. doi: 10.1046/j.1365-277X.2003.00477.x
  • Seal, AD, Bardis, CN, Gavrieli, A, et al. Coffee with high but not low caffeine content augments fluid and electrolyte excretion at rest. Front Nutr. 2017;4:4. doi: 10.3389/fnut.2017.00040
  • Food, U, Drug administration (fda), spilling the beans: how much caffeine is too much?| fda.
  • Drewnowski, A, Rehm, CD. Sources of caffeine in diets of us children and adults: trends by beverage type and purchase location. Nutrients. 2016;8(3):154. doi: 10.3390/nu8030154
  • Mitchell, DC, Knight, CA, Hockenberry, J, et al. Beverage caffeine intakes in the U.S. Food Chem Toxicol. 2014;63:136–142. doi: 10.1016/j.fct.2013.10.042
  • Institute of Medicine (US) Committee on Military Nutrition Research. Research IoMCoMN: caffeine for the sustainment of mental task performance: formulations for military operations. Washington (DC): National Academy Press (US); 2001. (Series Editor).
  • Mahdavi, S, Palatini, P, El-Sohemy, A. Cyp1a2 genetic variation, coffee intake, and kidney dysfunction. JAMA Netw Open. 2023;6(1):e2247868. doi: 10.1001/jamanetworkopen.2022.47868
  • Killer, SC, Blannin, AK, Jeukendrup, AE, et al. No evidence of dehydration with moderate daily coffee intake: a counterbalanced cross-over study in a free-living population. PloS One. 2014;9(1):e84154. doi: 10.1371/journal.pone.0084154
  • Zhang, Y, Coca, A, Casa, DJ, et al. Caffeine and diuresis during rest and exercise: a meta-analysis. J Sci Med Sport. 2015;18(5):569–74. doi: 10.1016/j.jsams.2014.07.017
  • McCusker, RR, Goldberger, BA, Cone, EJ. Caffeine content of specialty coffees. J Anal Toxicol. 2003;27(7):520–2. doi: 10.1093/jat/27.7.520
  • Silva, AM, Júdice, PB, Matias, CN, et al. Total body water and its compartments are not affected by ingesting a moderate dose of caffeine in healthy young adult males. Appl Physiol Nutr Metab. 2013;38(6):626–632. doi: 10.1139/apnm-2012-0253
  • Armstrong, LE, Pumerantz, AC, Roti, MW, et al. Fluid, electrolyte, and renal indices of hydration during 11 days of controlled caffeine consumption. Int J Sport Nutr Exercise Metab. 2005;15(3):252–265. doi: 10.1123/ijsnem.15.3.252
  • Grandjean, AC, Reimers, KJ, Bannick, KE, et al. The effect of caffeinated, non-caffeinated, caloric and non-caloric beverages on hydration. J Am Coll Nutr. 2000;19(5):591–600. doi: 10.1080/07315724.2000.10718956
  • Ruxton, CH, Hart, VA. Black tea is not significantly different from water in the maintenance of normal hydration in human subjects: results from a randomised controlled trial. Br J Nutr. 2011;106(4):588–595. doi: 10.1017/S0007114511000456
  • Iriondo-DeHond, A, Uranga, JA, Del Castillo, MD, et al. Effects of coffee and its components on the gastrointestinal tract and the brain–gut axis. Nutrients. 2020;13(1):13. doi: 10.3390/nu13010088
  • Neuhäuser-Berthold, M, Beine, S, Verwied, SC, et al. Coffee consumption and total body water homeostasis as measured by fluid balance and bioelectrical impedance analysis. Ann Nutr Metab. 1997;41(1):29–36. doi: 10.1159/000177975
  • Wemple, R, Lamb, D, McKeever, K. Caffeine vs caffeine-free sports drinks: effects on urine production at rest and during prolonged exercise. Int J Sports Med. 1997;18(01):40–46. doi: 10.1055/s-2007-972593
  • Bird, ET, Parker, BD, Kim, HS, et al. Caffeine ingestion and lower urinary tract symptoms in healthy volunteers. Neurourol Urodyn. 2005;24(7):611–615. doi: 10.1002/nau.20179
  • Maughan, RJ, Griffin, J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet. 2003;16(6):411–20. doi: 10.1046/j.1365-277X.2003.00477.x
  • Armstrong, LE. Caffeine, body fluid-electrolyte balance, and exercise performance. Int J Sport Nutr Exerc Metab. 2002;12(2):189–206. doi: 10.1123/ijsnem.12.2.189
  • Fenton, RA, Poulsen, SB, de la Mora Chavez, S, et al. Caffeine-induced diuresis and natriuresis is independent of renal tubular nhe3. Am J Physiol Renal Physiol. 2015;308(12):F1409–20. doi: 10.1152/ajprenal.00129.2015
  • Osswald, H, Schnermann, J. Methylxanthines and the kidney. Handb Exp Pharmacol. 2011;391–412.
  • Rieg, T, Steigele, H, Schnermann, J, et al. Requirement of intact adenosine a1 receptors for the diuretic and natriuretic action of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther. 2005;313(1):403–9. doi: 10.1124/jpet.104.080432
  • Vallon, V, Mühlbauer, B, Osswald, H. Adenosine and kidney function. Physiol Rev. 2006;86(3):901–40. doi: 10.1152/physrev.00031.2005
  • Armstrong, LE, Pumerantz, AC, Roti, MW, et al. Fluid, electrolyte, and renal indices of hydration during 11 days of controlled caffeine consumption. Int J Sport Nutr Exerc Metab. 2005;15(3):252–265. doi: 10.1123/ijsnem.15.3.252
  • Nehlig, A, Alexander, SPH. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018;70(2):384–411. doi: 10.1124/pr.117.014407
  • Ganio, MS, Johnson, EC, Klau, JF, et al. Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur J Appl Physiol. 2011;111(6):1135–46. doi: 10.1007/s00421-010-1734-x
  • Beaumont, RE, James, LJ. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J Sci Med Sport. 2017;20(11):1024–1028. doi: 10.1016/j.jsams.2017.03.017
  • Ely, BR, Ely, MR, Cheuvront, SN. Marginal effects of a large caffeine dose on heat balance during exercise-heat stress. Int J Sport Nutr Exerc Metab. 2011;21(1):65–70. doi: 10.1123/ijsnem.21.1.65
  • Millard-Stafford, ML, Cureton, KJ, Wingo, JE, et al. Hydration during exercise in warm, humid conditions: effect of a caffeinated sports drink. Int J Sport Nutr Exerc Metab. 2007;17(2):163–177. doi: 10.1123/ijsnem.17.2.163
  • Del Coso, J, Estevez, E, Mora-Rodriguez, R. Caffeine during exercise in the heat: thermoregulation and fluid-electrolyte balance. Med Sci Sports Exerc. 2009;41(1):164–73. doi: 10.1249/MSS.0b013e318184f45e
  • McLean, C, Graham, TE. Effects of exercise and thermal stress on caffeine pharmacokinetics in men and eumenorrheic women. J Appl Physiol. 2002;93:1471–1478. doi: 10.1152/japplphysiol.00762.2000
  • Fiala, KA, Casa, DJ, Roti, MW. Rehydration with a caffeinated beverage during the nonexercise periods of 3 consecutive days of 2-a-day practices. Int J Sport Nutr Exerc Metab. 2004;14(4):419–429. doi: 10.1123/ijsnem.14.4.419
  • Ramírez-Maldonado, M, Jurado-Fasoli, L, Del Coso, J, et al. Caffeine increases maximal fat oxidation during a graded exercise test: is there a diurnal variation? J Int Soc Sports Nutr. 2021;18(1):5. doi: 10.1186/s12970-020-00400-6
  • Ruiz-Moreno, C, Amaro-Gahete, FJ, González-García, J, et al. Caffeine increases exercise intensity and energy expenditure but does not modify substrate oxidation during 1 h of self-paced cycling. Eur J Nutr. 2022;61(6):3285–3292. doi: 10.1007/s00394-022-02894-z
  • Collado-Mateo, D, Lavín-Pérez, AM, Merellano-Navarro, E, et al. Effect of acute caffeine intake on the fat oxidation rate during exercise: a systematic review and meta-analysis. Nutrients. 2020;12(12):12. doi: 10.3390/nu12123603
  • Roshan, H, Nikpayam, O, Sedaghat, M, et al. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br J Nutr. 2018;119(3):250–258. doi: 10.1017/S0007114517003439
  • Shahmohammadi, H, Hosseini, S, Eskandar, H, et al. Effects of green coffee bean extract supplementation on patients with non-alcoholic fatty liver disease: a randomized clinical trial. Hepatitis Mon. 2017;17(4). In Press. doi: 10.5812/hepatmon.45609
  • Bakuradze, T, Montoya Parra, G, Schröter, A, et al. Four-week coffee consumption affects energy intake, satiety regulation, body fat, and protects DNA integrity. Food Res Int. 2014;63:420–427. doi: 10.1016/j.foodres.2014.05.032
  • Thom, E. The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res. 2007;35(6):900–8. doi: 10.1177/147323000703500620
  • Tabrizi, R, Saneei, P, Lankarani, KB, et al. The effects of caffeine intake on weight loss: a systematic review and dos-response meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2019;59(16):2688–2696. doi: 10.1080/10408398.2018.1507996
  • Ruiz-Fernandez, I, Valades, D, Dominguez, R, et al. Load and muscle group size influence the ergogenic effect of acute caffeine intake in muscular strength, power and endurance. Eur J Nutr. 2023;62(4):1783–1794. doi: 10.1007/s00394-023-03109-9
  • Tallis, J, Yavuz, HCM. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Appl Physiol Nutr Metab. 2018;43(3):274–281. doi: 10.1139/apnm-2017-0370
  • Duncan, MJ, Eyre, E, Grgic, J, et al. The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur J Sport Sci. 2019;19(10):1359–1366. doi: 10.1080/17461391.2019.1601261
  • Andre, T, Green, M, Gann, J, et al. Effects of caffeine on repeated upper/lower body wingates and handgrip performance. Int J Exercise Sci. 2015;46:5. doi: 10.1249/01.mss.0000495712.08913.cf
  • Beck, TW, Housh, TJ, Schmidt, RJ, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20(3):506–10. doi: 10.1519/00124278-200608000-00008
  • Goldstein, E, Jacobs, PL, Whitehurst, M, et al. Caffeine enhances upper body strength in resistance-trained women. J Int Soc Sports Nutr. 2010;7(1):18. doi: 10.1186/1550-2783-7-18
  • Sabol, F, Grgic, J, Mikulic, P. The effects of 3 different doses of caffeine on jumping and throwing performance: a randomized, double-blind, crossover study. Int J Sports Physiol Perform. 2019;14(9):1170–1177. doi: 10.1123/ijspp.2018-0884
  • Degrange, T, Jackson, W, Williams, T, et al. Acute caffeine ingestion increases velocity and power in upper and lower body free-weight resistance exercises. Int J Exercise Sci. 2019;12:1280–1289.
  • Timmins, TD, Saunders, DH. Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. J Strength Cond Res. 2014;28(11):3239–44. doi: 10.1519/JSC.0000000000000447
  • Lane, MT, Byrd, MT. Effects of pre-workout supplements on power maintenance in lower body and upper body tasks. J Funct Morphol Kinesiol. 2018;3(1):11. doi: 10.3390/jfmk3010011
  • Warren, GL, Park, ND, Maresca, RD, et al. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):1375–87. doi: 10.1249/MSS.0b013e3181cabbd8
  • Grgic, J, Trexler, ET, Lazinica, B, et al. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15(1):11. doi: 10.1186/s12970-018-0216-0
  • Ferreira, TT, da Silva, JVF, Bueno, NB. Effects of caffeine supplementation on muscle endurance, maximum strength, and perceived exertion in adults submitted to strength training: a systematic review and meta-analyses. Crit Rev Food Sci Nutr. 2021;61(15):2587–2600. doi: 10.1080/10408398.2020.1781051
  • Rocha, JCC, da Rocha, ALS, da Silva Santos Soares, G, et al. Effects of caffeine ingestion on upper and lower limb muscle power of handball players: a double-blind, placebo-controlled, crossover study. Sport Sci Health. 2021;17(4):1039–1044. doi: 10.1007/s11332-021-00803-1
  • Ferreira, LHB, Forbes, SC, Barros, MP, et al. High doses of caffeine increase muscle strength and calcium release in the plasma of recreationally trained men. Nutrients. 2022;14(22):14. doi: 10.3390/nu14224921
  • Richards, G, Smith, AP. A review of energy drinks and mental health, with a focus on stress, anxiety, and depression. J Caffeine Res. 2016;6(2):49–63. doi: 10.1089/jcr.2015.0033
  • Yang, LS, Zhang, ZY, Yan, LJ, et al. Caffeine intake is associated with less severe depressive symptoms in noncancer populations: an analysis based on NHANES 2007-2016. Nutr Res. 2023;118:1–11. doi: 10.1016/j.nutres.2023.07.004
  • Torabynasab, K, Shahinfar, H, Payandeh, N, et al. Association between dietary caffeine, coffee, and tea consumption and depressive symptoms in adults: a systematic review and dose-response meta-analysis of observational studies. Front Nutr. 2023;10:1051444. doi: 10.3389/fnut.2023.1051444
  • Murakami, K, Sasaki, S. Dietary intake and depressive symptoms: a systematic review of observational studies. Mol Nutr Food Res. 2010;54(4):471–88. doi: 10.1002/mnfr.200900157
  • Matison, AP, Mather, KA, Flood, VM, et al. Associations between nutrition and the incidence of depression in middle-aged and older adults: a systematic review and meta-analysis of prospective observational population-based studies. Ageing Res Rev. 2021;70:101403. doi: 10.1016/j.arr.2021.101403
  • Lucas, M, Mirzaei, F, Pan, A, et al. Coffee, caffeine, and risk of depression among women. Arch Intern Med. 2011;171(17):1571–1578. doi: 10.1001/archinternmed.2011.393
  • Grosso, G, Micek, A, Castellano, S, et al. Coffee, tea, caffeine and risk of depression: a systematic review and dose–response meta-analysis of observational studies. Mol Nutr Food Res. 2016;60(1):223–234. doi: 10.1002/mnfr.201500620
  • Glade, MJ. Caffeine—not just a stimulant. Nutrition. 2010;26(10):932–938. doi: 10.1016/j.nut.2010.08.004
  • EFSA panel on dietetic products N and allergies: scientific opinion on the safety of caffeine. EFSA J. 2015;13(5):4102. doi: 10.2903/j.efsa.2015.4102
  • Beer, CPD. Caffeine: the forgotten variable. Int J Psychiatry Clin Pract. 2001;5(4):231–236. doi: 10.1080/13651500152732991
  • Bao, J, Li, P, Guo, Y, et al. Caffeine is negatively associated with depression in patients aged 20 and older. Front Psychiatry. 2022;13:1037579. doi: 10.3389/fpsyt.2022.1037579
  • Iranpour, S, Sabour, S. Inverse association between caffeine intake and depressive symptoms in us adults: data from national health and nutrition examination survey (NHANES) 2005-2006. Psychiatry Res. 2019;271:732–739. doi: 10.1016/j.psychres.2018.11.004
  • Richards, G, Smith, A. Caffeine consumption and self-assessed stress, anxiety, and depression in secondary school children. J Psychopharmacol. 2015;29(12):1236–47. doi: 10.1177/0269881115612404
  • Nehlig, A. Effects of coffee/caffeine on brain health and disease: what should i tell my patients? Pract Neurol. 2016;16(2):89–95. doi: 10.1136/practneurol-2015-001162
  • Asil, E, Yılmaz, MV, Yardimci, H. Effects of black tea consumption and caffeine intake on depression risk in black tea consumers. Afr H Sci. 2021;21(2):858–865. doi: 10.4314/ahs.v21i2.47
  • Pathan, B. Relationship between caffeine abuse and depression among college students. Int J Indian Psychol. 2022;10(1).
  • Nardi, AE, Valença, AM, Nascimento, I, et al. A caffeine challenge test in panic disorder patients, their healthy first‐degree relatives, and healthy controls. Depress Anxiety. 2008;25(10):847–853. doi: 10.1002/da.20354
  • Nardi, AE, Lopes, FL, Freire, RC, et al. Panic disorder and social anxiety disorder subtypes in a caffeine challenge test. Psychiatry Res. 2009;169(2):149–153. doi: 10.1016/j.psychres.2008.06.023
  • Barnard, J, Roberts, S, Lastella, M, et al. The impact of dietary factors on the sleep of athletically trained populations: a systematic review. Nutrients. 2022;14(16):3271. doi: 10.3390/nu14163271
  • Snel, J, Lorist, MM. Effects of caffeine on sleep and cognition. Prog Brain Res. 2011;190:105–117.
  • Yang, A, Palmer, AA, de Wit, H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacol (Berl). 2010;211(3):245–257. doi: 10.1007/s00213-010-1900-1
  • Juliano, LM, Griffiths, RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacol (Berl). 2004;176(1):1–29. doi: 10.1007/s00213-004-2000-x
  • Yin, J, Ding, Y, Xu, F, et al. Does the timing of intake matter? Association between caffeine intake and depression: evidence from the national health and nutrition examination survey. J Affect Disord. 2023;340:362–368. doi: 10.1016/j.jad.2023.07.115
  • López-Cruz, L, Salamone, JD, Correa, M. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front Pharmacol. 2018;9:526. doi: 10.3389/fphar.2018.00526
  • Tinsley, GM, Hamm, MA, Hurtado, AK, et al. Effects of two pre-workout supplements on concentric and eccentric force production during lower body resistance exercise in males and females: a counterbalanced, double-blind, placebo-controlled trial. J Int Soc Sports Nutr. 2017;14(1):46. doi: 10.1186/s12970-017-0203-x
  • Adamson, RH. The acute lethal dose 50 (ld50) of caffeine in albino rats. Regul Toxicol Pharmacol. 2016;80:274–6. doi: 10.1016/j.yrtph.2016.07.011
  • Skinner, TL, Desbrow, B, Arapova, J, et al. Women experience the same ergogenic response to caffeine as men. Med Sci Sports Exerc. 2019;51(6):1195–1202. doi: 10.1249/MSS.0000000000001885
  • Cappelletti, S, Piacentino, D, Fineschi, V, et al. Caffeine-related deaths: manner of deaths and categories at risk. Nutrients. 2018;10(5):10. doi: 10.3390/nu10050611
  • Willson, C. The clinical toxicology of caffeine: a review and case study. Toxicol Rep. 2018;5:1140–1152. doi: 10.1016/j.toxrep.2018.11.002
  • Kerrigan, S, Lindsey, T. Fatal caffeine overdose: two case reports. Forensic Sci Int. 2005;153(1):67–9. doi: 10.1016/j.forsciint.2005.04.016
  • Jabbar, SB, Hanly, MG. Fatal caffeine overdose: a case report and review of literature. Am J Forensic Med Pathol. 2013;34(4):321–4. doi: 10.1097/PAF.0000000000000058
  • Snetselaar, LG, de Jesus, JM, DeSilva, DM, et al. Dietary guidelines for Americans, 2020–2025. Nutr Today. 2021;56(6):287–295. doi: 10.1097/NT.0000000000000512
  • Soldin, OP, Mattison, DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48(3):143–57. doi: 10.2165/00003088-200948030-00001
  • White, JR Jr., Padowski, JM, Zhong, Y, et al. Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clin Toxicol (Phila). 2016;54(4):308–12. doi: 10.3109/15563650.2016.1146740
  • Rodak, K, Kokot, I, Kratz, EM. Caffeine as a factor influencing the functioning of the human body—friend or foe? Nutrients. 2021;13(9):13. doi: 10.3390/nu13093088
  • Hartley, TR, Lovallo, WR, Whitsett, TL. Cardiovascular effects of caffeine in men and women. Am J Cardiol. 2004;93(8):1022–6. doi: 10.1016/j.amjcard.2003.12.057
  • Kurokawa, N, Niwa, R, Tada, K, et al. No sex differences in the acute effects of caffeine on mental calculation and pulse rate in healthy college students. Clin Nutri Open Sci. 2023;48:36–42. doi: 10.1016/j.nutos.2023.01.004
  • Temple, JL, Ziegler, AM. Gender differences in subjective and physiological responses to caffeine and the role of steroid hormones. J Caffeine Res. 2011;1(1):41–48. doi: 10.1089/jcr.2011.0005
  • Clark, NW, Herring, CH, Goldstein, ER, et al. Heart rate variability behavior during exercise and short-term recovery following energy drink consumption in men and women. Nutrients. 2020;12(8):12. doi: 10.3390/nu12082372
  • Adan, A, Prat, G, Fabbri, M, et al. Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1698–703. doi: 10.1016/j.pnpbp.2008.07.005
  • Domaszewski, P. Gender differences in the frequency of positive and negative effects after acute caffeine consumption. Nutrients. 2023;15(6):15. doi: 10.3390/nu15061318
  • Sabblah, S, Dixon, D, Bottoms, L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp Exerc Physiol. 2015;11(2):89–94. doi: 10.3920/CEP150010
  • Chen, H-Y, Chen, Y-C, Tung, K, et al. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: a double-blind randomized trial. J Appl Physiol. 2019;127(3):798–805. doi: 10.1152/japplphysiol.01108.2018
  • Anderson, ME, Bruce, CR, Fraser, SF, et al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10(4):464–475. doi: 10.1123/ijsnem.10.4.464
  • Jiménez, SL, Díaz-Lara, J, Pareja-Galeano, H, et al. Caffeinated drinks and physical performance in sport: a systematic review. Nutrients. 2021;13(9):2944. doi: 10.3390/nu13092944
  • Rasmussen, BB, Brix, TH, Kyvik, KO, et al. The interindividual differences in the 3-demthylation of caffeine alias cyp1a2 is determined by both genetic and environmental factors. Pharmacogenetics. 2002;12(6):473–8. doi: 10.1097/00008571-200208000-00008
  • Fredholm, BB. Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol Scand. 1982;115(2):283–286. doi: 10.1111/j.1748-1716.1982.tb07078.x
  • Van Soeren, M, Graham, T. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85(4):1493–1501. doi: 10.1152/jappl.1998.85.4.1493
  • Apostolidis, A, Mougios, V, Smilios, I, et al. Higher and lower caffeine consumers: exercise performance and biological responses during a simulated soccer-game protocol following caffeine ingestion. Eur J Nutr. 2022;61(8):4135–4143. doi: 10.1007/s00394-022-02955-3
  • Carvalho, A, Marticorena, FM, Grecco, BH, et al. Can i have my coffee and drink it? A systematic review and meta-analysis to determine whether habitual caffeine consumption affects the ergogenic effect of caffeine. Sports Med. 2022;52(9):2209–2220. doi: 10.1007/s40279-022-01685-0
  • Clarke, ND, Richardson, DL. Habitual caffeine consumption does not affect the ergogenicity of coffee ingestion during a 5 km cycling time trial. Int J Sport Nutr Exercise Metab. 2020;31(1):13–20. doi: 10.1123/ijsnem.2020-0204
  • de Salles Painelli, V, Teixeira, EL, Tardone, B, et al. Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. Int J Sport Nutr Exercise Metab. 2021;31(4):321–328. doi: 10.1123/ijsnem.2020-0363
  • de Souza Gonçalves, L, de Salles Painelli, V, Yamaguchi, G, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123(1):213–220. doi: 10.1152/japplphysiol.00260.2017
  • Dodd, S, Brooks, E, Powers, S, et al. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol Occup Physiol. 1991;62(6):424–429. doi: 10.1007/BF00626615
  • Grgic, J, Mikulic, P. Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: No influence of habitual caffeine intake. Eur J Sport Sci. 2021;21(8):1165–1175. doi: 10.1080/17461391.2020.1817155
  • Irwin, C, Desbrow, B, Ellis, A, et al. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29(5):509–515. doi: 10.1080/02640414.2010.541480
  • Sabol, F, Grgic, J, Mikulic, P. The effects of 3 different doses of caffeine on jumping and throwing performance: a randomized, double-blind, crossover study. Int J Sports Physiol Perform. 2019;14(9):1170–1177. doi: 10.1123/ijspp.2018-0884
  • Wilk, M, Krzysztofik, M, Filip, A, et al. The effects of high doses of caffeine on maximal strength and muscular endurance in athletes habituated to caffeine. Nutrients. 2019;11(8):1912. doi: 10.3390/nu11081912
  • Beaumont, R, Cordery, P, Funnell, M, et al. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920–1927. doi: 10.1080/02640414.2016.1241421
  • Bell, DG, McLellan, TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93:1227–1234. doi: 10.1152/japplphysiol.00187.2002
  • Lara, B, Ruiz-Moreno, C, Salinero, JJ, et al. Time course of tolerance to the performance benefits of caffeine. PloS One. 2019;14(1):e0210275. doi: 10.1371/journal.pone.0210275
  • Pickering, C, Grgic, J. Is coffee a useful source of caffeine preexercise? Int J Sport Nutr Exercise Metab. 2020;30(1):69–82. doi: 10.1123/ijsnem.2019-0092
  • Zhang, B, Liu, Y, Wang, X, et al. Cognition and brain activation in response to various doses of caffeine: a near-infrared spectroscopy study. Frontiers In Psychology. 2020;11:1393. doi: 10.3389/fpsyg.2020.01393
  • Tallis, J, Guimaraes-Ferreira, L, Clarke, ND. Not another caffeine effect on sports performance study—nothing new or more to do? Nutrients. 2022;14(21):4696. doi: 10.3390/nu14214696
  • Grgic, J. Are there non-responders to the ergogenic effects of caffeine ingestion on exercise performance? Nutrients. 2018;10(11):1736. doi: 10.3390/nu10111736
  • Southward, K, Rutherfurd-Markwick, K, Badenhorst, C, et al. The role of genetics in moderating the inter-individual differences in the ergogenicity of caffeine. Nutrients. 2018;10(10):10. doi: 10.3390/nu10101352
  • Del Coso, J, Lara, B, Ruiz-Moreno, C, et al. Challenging the myth of non-response to the ergogenic effects of caffeine ingestion on exercise performance. Nutrients. 2019;11(4):11. doi: 10.3390/nu11040732
  • Maughan, RJ, Burke, LM, Dvorak, J, et al. Ioc consensus statement: dietary supplements and the high-performance athlete. Int J Sport Nutr Exerc Metab. 2018;28(2):104–125. doi: 10.1123/ijsnem.2018-0020
  • Berjisian, E, Naderi, A, Mojtahedi, S, et al. Are caffeine’s effects on resistance exercise and jumping performance moderated by training status? Nutrients. 2022;14(22):14. doi: 10.3390/nu14224840
  • Grgic, J, Pickering, C, Del Coso, J, et al. Cyp1a2 genotype and acute ergogenic effects of caffeine intake on exercise performance: a systematic review. Eur J Nutr. 2021;60(3):1181–1195. doi: 10.1007/s00394-020-02427-6
  • Pickering, C, Grgic, J. Caffeine and exercise: what next? Sports Med. 2019;49(7):1007–1030. doi: 10.1007/s40279-019-01101-0
  • Zanger, UM, Schwab, M. Cytochrome p450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. doi: 10.1016/j.pharmthera.2012.12.007
  • Guest, N, Corey, P, Vescovi, J, et al. Caffeine, cyp1a2 genotype, and endurance performance in athletes. Med Sci Sports Exerc. 2018;50:1570–1578. doi: 10.1249/MSS.0000000000001596
  • Minaei, S, Rahimi, MR, Mohammadi, H, et al. Cyp1a2 genotype polymorphism influences the effect of caffeine on anaerobic performance in trained males. Int J Sport Nutr Exerc Metab. 2022;32(1):16–21. doi: 10.1123/ijsnem.2021-0090
  • Womack, CJ, Saunders, MJ, Bechtel, MK, et al. The influence of a cyp1a2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7. doi: 10.1186/1550-2783-9-7
  • Algrain, HA, Thomas, RM, Carrillo, AE, et al. The effects of a polymorphism in the cytochrome p450 cyp1a2 gene on performance enhancement with caffeine in recreational cyclists. J Caffeine Res. 2016;6(1):34–39. doi: 10.1089/jcr.2015.0029
  • Giersch, GE, Boyett, JC, Hargens, TA, et al. The effect of the cyp1a2− 163 c> a polymorphism on caffeine metabolism and subsequent cycling performance. J Caffeine Adenosine Res. 2018;8(2):65–70. doi: 10.1089/caff.2017.0028
  • Pataky, MW, Womack, CJ, Saunders, MJ, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26(6):613–9. doi: 10.1111/sms.12501
  • Dos Santos, MPP, Spineli, H, Dos Santos, BP, et al. The effect of caffeine on exercise performance is not influenced by adora2a genotypes, alone or pooled with cyp1a2 genotypes, in adolescent athletes. Eur J Nutr. 2022;62:1041–1050. doi: 10.1007/s00394-022-03045-0
  • Tamilio, RA, Clarke, ND, Duncan, MJ, et al. How repeatable is the ergogenic effect of caffeine? Limited reproducibility of acute caffeine (3 mg. Kg− 1) ingestion on muscular strength, power, and muscular endurance. Nutrients. 2022;14(20):4416. doi: 10.3390/nu14204416
  • McLellan, TM, Caldwell, JA, Lieberman, HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312. doi: 10.1016/j.neubiorev.2016.09.001
  • Meeusen, R. Exercise, nutrition and the brain. Sports Med. 2014;44(Suppl S1):S47–56. doi: 10.1007/s40279-014-0150-5
  • Shechter, M, Shalmon, G, Scheinowitz, M, et al. Impact of acute caffeine ingestion on endothelial function in subjects with and without coronary artery disease. Am J Cardiol. 2011;107(9):1255–1261. doi: 10.1016/j.amjcard.2010.12.035
  • Lopez-Garcia, E, Rodriguez-Artalejo, F, Rexrode, KM, et al. Coffee consumption and risk of stroke in women. Circulation. 2009;119(8):1116–23. doi: 10.1161/CIRCULATIONAHA.108.826164
  • Ding, M, Bhupathiraju, SN, Satija, A, et al. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129(6):643–59. doi: 10.1161/CIRCULATIONAHA.113.005925
  • James, JE. Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously. Psychosom Med. 2004;66(1):63–71. doi: 10.1097/10.PSY.0000107884.78247.F9
  • Nawrot, P, Jordan, S, Eastwood, J, et al. Effects of caffeine on human health. Food Addit Contam. 2003;20(1):1–30. doi: 10.1080/0265203021000007840
  • Vlachopoulos, C, Hirata, K, O’Rourke, MF. Effect of caffeine on aortic elastic properties and wave reflection. J Hypertens. 2003;21:563–570. doi: 10.1097/00004872-200303000-00022
  • Conen, D, Chiuve, SE, Everett, BM, et al. Caffeine consumption and incident atrial fibrillation in women. Am J Clin Nutr. 2010;92(3):509–14. doi: 10.3945/ajcn.2010.29627
  • Heckman, MA, Weil, J, de Mejia, EG. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75(3):R77–87. doi: 10.1111/j.1750-3841.2010.01561.x
  • Smith, A. Effects of caffeine on human behavior. Food Chem Toxicol. 2002;40(9):1243–55. doi: 10.1016/S0278-6915(02)00096-0
  • Cornelis, MC, El-Sohemy, A, Campos, H. Genetic polymorphism of the adenosine a2a receptor is associated with habitual caffeine consumption. Am J Clin Nutr. 2007;86(1):240–244. doi: 10.1093/ajcn/86.1.240
  • FDA. Spilling the Beans: how much caffeine is too much? https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much
  • Palatini, P, Julius, S. The role of cardiac autonomic function in hypertension and cardiovascular disease. Curr Hypertens Rep. 2009;11(3):199–205. doi: 10.1007/s11906-009-0035-4
  • Temple, JL, Bernard, C, Lipshultz, SE, et al. The safety of ingested caffeine: a comprehensive review. Front Psychiatry. 2017;8:80. doi: 10.3389/fpsyt.2017.00080
  • Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–795. doi: 10.1001/jama.285.6.785
  • Cosman, F, de Beur, SJ, LeBoff, MS, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81. doi: 10.1007/s00198-014-2794-2
  • Trajanoska, K, Schoufour, JD, de Jonge, EAL, et al. Fracture incidence and secular trends between 1989 and 2013 in a population based cohort: the Rotterdam study. Bone. 2018;114:116–124. doi: 10.1016/j.bone.2018.06.004
  • Iuliano, S, Poon, S, Robbins, J, et al. Effect of dietary sources of calcium and protein on hip fractures and falls in older adults in residential care: cluster randomised controlled trial. BMJ. 2021;375(2364):n2364. doi: 10.1136/bmj.n2364
  • Weaver, CM, Gordon, CM, Janz, KF, et al. The national osteoporosis foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–1386. doi: 10.1007/s00198-015-3440-3
  • Yuan, S, Michaëlsson, K, Wan, Z, et al. Associations of smoking and alcohol and coffee intake with fracture and bone mineral density: a Mendelian randomization study. Calcif Tissue Int. 2019;105(6):582–588. doi: 10.1007/s00223-019-00606-0
  • Zeng, X, Su, Y, Tan, A, et al. The association of coffee consumption with the risk of osteoporosis and fractures: a systematic review and meta-analysis. Osteoporos Int. 2022;33(9):1871–1893. doi: 10.1007/s00198-022-06399-7
  • Hallström, H, Wolk, A, Glynn, A, et al. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int. 2006;17(7):1055–64. doi: 10.1007/s00198-006-0109-y
  • Berman, NK, Honig, S, Cronstein, BN, et al. The effects of caffeine on bone mineral density and fracture risk. Osteoporos Int. 2022;33(6):1235–1241. doi: 10.1007/s00198-021-05972-w
  • Mediero, A, Cronstein, BN. Mediero a and Cronstein BN: Adenosine and bone metabolism. Trends Endocrinol Metab. 2013;24(6):290–300. doi: 10.1016/j.tem.2013.02.001
  • Rapuri, PB, Gallagher, JC, Nawaz, Z. Caffeine decreases vitamin d receptor protein expression and 1,25(oh)2d3 stimulated alkaline phosphatase activity in human osteoblast cells. J Steroid Biochem Mol Biol. 2007;103(3–5):368–71. doi: 10.1016/j.jsbmb.2006.12.037
  • Lacerda, SA, Matuoka, RI, Macedo, RM, et al. Bone quality associated with daily intake of coffee: a biochemical, radiographic and histometric study. Braz Dent J. 2010;21(3):199–204. doi: 10.1590/S0103-64402010000300004
  • Massey, LK, Whiting, SJ. Caffeine, urinary calcium, calcium metabolism and bone. J Nutr. 1993;123(9):1611–4. doi: 10.1093/jn/123.9.1611
  • Chen, X, Whitford, GM. Effects of caffeine on fluoride, calcium and phosphorus metabolism and calcified tissues in the rat. Arch Oral Biol. 1999;44(1):33–39. doi: 10.1016/S0003-9969(98)00090-9
  • Chang, HC, Hsieh, CF, Lin, YC, et al. Does coffee drinking have beneficial effects on bone health of Taiwanese adults? A longitudinal study. BMC Public Health. 2018;18(1):1273. doi: 10.1186/s12889-018-6168-0
  • Zhang, ZF, Yang, JL, Jiang, HC, et al. Updated association of tea consumption and bone mineral density: a meta-analysis. Medicine (Baltimore). 2017;96(12):e6437. doi: 10.1097/MD.0000000000006437
  • Chen, CC, Shen, YM, Li, SB, et al. Association of coffee and tea intake with bone mineral density and hip fracture: a meta-analysis. Medicina (Kaunas). 2023;59(6):59. doi: 10.3390/medicina59061177
  • Sheng, J, Qu, X, Zhang, X, et al. Coffee, tea, and the risk of hip fracture: a meta-analysis. Osteoporos Int. 2014;25(1):141–50. doi: 10.1007/s00198-013-2563-7
  • Darakjian, LI, Kaddoumi, A. Physiologically based pharmacokinetic/pharmacodynamic model for caffeine disposition in pregnancy. Mol Pharmaceut. 2019;16(3):1340–1349. doi: 10.1021/acs.molpharmaceut.8b01276
  • Grosso, LM, Bracken, MB. Caffeine metabolism, genetics, and perinatal outcomes: a review of exposure assessment considerations during pregnancy. Ann Epidemiol. 2005;15(6):460–466. doi: 10.1016/j.annepidem.2004.12.011
  • Fenster, L, Eskenazi, B, Windham, GC, et al. Caffeine consumption during pregnancy and fetal growth. Am J Public Health. 1991;81(4):458–461. doi: 10.2105/AJPH.81.4.458
  • Román-Gálvez, MR, Martín-Peláez, S, Hernández-Martínez, L, et al. Caffeine intake throughout pregnancy, and factors associated with non-compliance with recommendations: a cohort study. Nutrients. 2022;14(24):5384. doi: 10.3390/nu14245384
  • Qian, J, Chen, Q, Ward, SM, et al. Impacts of caffeine during pregnancy. Trends Endocrinol Metab. 2020;31(3):218–227. doi: 10.1016/j.tem.2019.11.004
  • Sasaki, S, Limpar, M, Sata, F, et al. Interaction between maternal caffeine intake during pregnancy and cyp1a2 c164a polymorphism affects infant birth size in the Hokkaido study. Pediat Res. 2017;82(1):19–28. doi: 10.1038/pr.2017.70
  • James, JE. Maternal caffeine consumption and pregnancy outcomes: a narrative review with implications for advice to mothers and mothers-to-be. BMJ Evid Based Med. 2021;26(3):114–115. doi: 10.1136/bmjebm-2020-111432
  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Arlington: American Psychiatric Association; 2013. (Series Editor).
  • Addicott, MA. Caffeine use disorder: a review of the evidence and future implications. Curr Addict Rep. 2014;1(3):186–192. doi: 10.1007/s40429-014-0024-9
  • World Health Organization. The international statistical classification of diseases and related health problems (10th revision; icd-10), the most recent international medical diagnostic system. WHO; 1993.
  • World Health Organization, International Statistical Classification Of Diseases And Related Health Problems. 2019.
  • Dos Santos, MKF, Gavioli, EC, Rosa, LS, et al. Craving espresso: the dialetics in classifying caffeine as an abuse drug. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(12):1301–1318. doi: 10.1007/s00210-018-1570-9
  • Meredith, SE, Juliano, LM, Hughes, JR, et al. Caffeine use disorder: a comprehensive review and research agenda. J Caffeine Res. 2013;3(3):114–130. doi: 10.1089/jcr.2013.0016
  • Heinz, A, Daedelow, LS, Wackerhagen, C, et al. Addiction theory matters—why there is no dependence on caffeine or antidepressant medication. Addict Biol. 2020;25(2):e12735. doi: 10.1111/adb.12735
  • Wise, RA, Bozarth, MA. A psychomotor stimulant theory of addiction. Psychol Rev. 1987;94(4):469–492. doi: 10.1037/0033-295X.94.4.469
  • Fava, GA, Gatti, A, Belaise, C, et al. Withdrawal symptoms after selective serotonin reuptake inhibitor discontinuation: a systematic review. Psychother Psychosom. 2015;84(2):72–81. doi: 10.1159/000370338
  • Vengeliene, V, Bilbao, A, Molander, A, et al. Neuropharmacology of alcohol addiction. Br J Pharmacol. 2008;154(2):299–315. doi: 10.1038/bjp.2008.30
  • Nam, HW, Bruner, RC, Choi, DS. Adenosine signaling in striatal circuits and alcohol use disorders. Mol Cells. 2013;36(3):195–202. doi: 10.1007/s10059-013-0192-9
  • Volkow, ND, Wang, GJ, Logan, J, et al. Caffeine increases striatal dopamine d2/d3 receptor availability in the human brain. Transl Psychiatry. 2015;5(4):e549. doi: 10.1038/tp.2015.46
  • Krieger, DT, Allen, W, Rizzo, F, et al. Characterization of the normal temporal pattern of plasma corticosteroid levels. J Clin Endocrinol Metab. 1971;32(2):266–84. doi: 10.1210/jcem-32-2-266
  • Buckley, TM, Schatzberg, AF. On the interactions of the hypothalamic-pituitary-adrenal (hpa) axis and sleep: normal hpa axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–14. doi: 10.1210/jc.2004-1056
  • Hahner, S, Loeffler, M, Fassnacht, M, et al. Impaired subjective health status in 256 patients with adrenal insufficiency on standard therapy based on cross-sectional analysis. J Clin Endocrinol Metab. 2007;92(10):3912–22. doi: 10.1210/jc.2007-0685
  • Lane, JD, Adcock, RA, Williams, RB, et al. Caffeine effects on cardiovascular and neuroendocrine responses to acute psychosocial stress and their relationship to level of habitual caffeine consumption. Psychosom Med. 1990;52(3):320–36. doi: 10.1097/00006842-199005000-00006
  • Lovallo, WR, Pincomb, GA, Sung, BH, et al. Caffeine may potentiate adrenocortical stress responses in hypertension-prone men. Hypertension. 1989;14(2):170–6. doi: 10.1161/01.HYP.14.2.170
  • Lovallo, WR, Al’absi, M, Blick, K, et al. Stress-like adrenocorticotropin responses to caffeine in young healthy men. Pharmacol Biochem Behav. 1996;55(3):365–9. doi: 10.1016/S0091-3057(96)00105-0
  • Sung, BH, Lovallo, WR, Pincomb, GA, et al. Effects of caffeine on blood pressure response during exercise in normotensive healthy young men. Am J Cardiol. 1990;65(13):909–13. doi: 10.1016/0002-9149(90)91435-9
  • Rieth, N, Vibarel-Rebot, N, Buisson, C, et al. Caffeine and saliva steroids in young healthy recreationally trained women: impact of regular caffeine intake. Endocrine. 2016;52(2):391–4. doi: 10.1007/s12020-015-0780-x
  • Lovallo, WR, Whitsett, TL, Al’absi, M, et al. Caffeine stimulation of cortisol secretion across the waking hours in relation to caffeine intake levels. Psychosom Med. 2005;67(5):734–9. doi: 10.1097/01.psy.0000181270.20036.06
  • MacKenzie, T, Comi, R, Sluss, P, et al. Metabolic and hormonal effects of caffeine: randomized, double-blind, placebo-controlled crossover trial. Metabolism. 2007;56(12):1694–8. doi: 10.1016/j.metabol.2007.07.013
  • Weibel, J, Lin, YS, Landolt, HP, et al. The impact of daily caffeine intake on nighttime sleep in young adult men. Sci Rep. 2021;11(1):4668. doi: 10.1038/s41598-021-84088-x
  • Davitt, PM, Henderson, GC, Walker, AJ, et al. Postprandial hormone response after endurance or resistance exercise in obese women. Comp Exerc Physiol. 2017;13(4):227–235. doi: 10.3920/CEP170008
  • Reichert, CF, Deboer, T, Landolt, HP. Adenosine, caffeine, and sleep–wake regulation: state of the science and perspectives. J Sleep Res. 2022;31(4):e13597. doi: 10.1111/jsr.13597
  • Basheer, R, Strecker, RE, Thakkar, MM, et al. Adenosine and sleep–wake regulation. Prog Neurobiol. 2004;73(6):379–396. doi: 10.1016/j.pneurobio.2004.06.004
  • Holst, SC, Landolt, H-P. Sleep homeostasis, metabolism, and adenosine. Curr Sleep Med Rep. 2015;1(1):27–37. doi: 10.1007/s40675-014-0007-3
  • Wall, M, Dale, N. Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol. 2008;6(4):329–37. doi: 10.2174/157015908787386087
  • Dworak, M, McCarley, RW, Kim, T, et al. Sleep and brain energy levels: atp changes during sleep. J Neurosci. 2010;30(26):9007–16. doi: 10.1523/JNEUROSCI.1423-10.2010
  • Murillo-Rodriguez, E, Blanco-Centurion, C, Gerashchenko, D, et al. The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neuroscience. 2004;123(2):361–70. doi: 10.1016/j.neuroscience.2003.09.015
  • Alanko, L, Stenberg, D, Porkka-Heiskanen, T. Nitrobenzylthioinosine (nbmpr) binding and nucleoside transporter ent1 mRNA expression after prolonged wakefulness and recovery sleep in the cortex and basal forebrain of rat. J Sleep Res. 2003;12(4):299–304. doi: 10.1046/j.0962-1105.2003.00372.x
  • Elmenhorst, D, Meyer, PT, Matusch, A, et al. Caffeine occupancy of human cerebral a1 adenosine receptors: in vivo quantification with 18f-cpfpx and pet. J Nucl Med. 2012;53(11):1723–9. doi: 10.2967/jnumed.112.105114