1,873
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High-dose short-term creatine supplementation without beneficial effects in professional cyclists: a randomized controlled trial

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Article: 2340574 | Received 06 Aug 2023, Accepted 03 Apr 2024, Published online: 12 Apr 2024

References

  • Valenzuela PL, Morales JS, Emanuele E, et al. Supplements with purported effects on muscle mass and strength. Eur J Nutr. 2019;58(8):2983–318. doi: 10.1007/s00394-018-1882-z
  • Kreider RB, Kalman DS, Antonio J, et al. International society of sports nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14(1):1–18. doi: 10.1186/s12970-017-0173-z
  • Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83(3):367–374. doi: 10.1042/cs0830367
  • Hultman E, Söderlund K, Timmons JA, et al. Muscle creatine loading in men. J Appl Physiol. 1996;81(1):232–237. doi: 10.1152/jappl.1996.81.1.232
  • Lanhers C, Pereira B, Naughton G, et al. Creatine supplementation and lower limb strength performance: a systematic review and meta-analyses. Sport Med. 2015;45(9):1285–1294. doi: 10.1007/s40279-015-0337-4
  • Lanhers C, Pereira B, Naughton G, et al. Creatine supplementation and upper limb strength performance: a systematic review and meta-analysis. Sport Med. 2017;47(1):163–173. doi: 10.1007/s40279-016-0571-4
  • Deutekom M, Beltman JGM, De Ruiter CJ, et al. No acute effects of short-term creatine supplementation on muscle properties and sprint performance. Eur J Appl Physiol. 2000;82(3):223–229. doi: 10.1007/s004210050675
  • Finn JP, Ebert TR, Withers RT, et al. Effect of creatine supplementation on metabolism and performance in humans during intermittent sprint cycling. Eur J Appl Physiol. 2001;84(3):238–243. doi: 10.1007/s004210170011
  • Glaister M, Rhodes L. Short-term creatine supplementation and repeated sprint ability—a systematic review and meta-analysis. Int J Sport Nutr Exerc Metab. 2022;32(6):491–500. doi: 10.1123/ijsnem.2022-0072
  • Bogdanis GC, Nevill ME, Aphamis G, et al. Effects of oral creatine supplementation on power output during repeated treadmill sprinting. Nutrients. 2022;14(6):1–14. doi: 10.3390/nu14061140
  • Cramer J, Stout J, Culberston J, et al. Effects of creatine supplementation and three days of resistance training on muscle strength, power output, and neuromuscular function. J Strength Cond Res. 2007;21(3):668–677. doi: 10.1519/00124278-200708000-00004
  • Bazzucchi I, Felici F, Sacchetti M. Effect of short-term creatine supplementation on neuromuscular function. Med Sci Sports Exerc. 2009;41(10):1934–1941. doi: 10.1249/MSS.0b013e3181a2c05c
  • Urbanski RL, Loy SF, Vincent WJ, et al. Creatine supplementation differentially affects maximal isometric strength and time to fatigue in large and small muscle groups. Int J Sport Nutr. 1999;9(2):136–145. doi: 10.1123/ijsn.9.2.136
  • Tarnopolsky MA, MacLennan D. Creatine monohydrate supplementation enhances high-intensity exercise performance in males and females. Int J Sport Nutr Exerc Metab. 2000;10(4):452–463. doi: 10.1123/ijsnem.10.4.452
  • Wiroth JB, Bermon S, Andreï S, et al. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol. 2001;84(6):533–539. doi: 10.1007/s004210000370
  • Skare OC, Skadberg O, Wisnes AR. Creatine supplementation improves sprint performance in male sprinters La supplementation en creatine ameliore la performance chez les sprinters masculins. Scand J Med Sci Sports. 2001;11(2):96–102. doi: 10.1034/j.1600-0838.2001.011002096.x
  • Casey A, Constantin-Teodosiu D, Howell S, et al. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol. 1996;271(1):E31–E37. doi: 10.1152/ajpendo.1996.271.1.E31
  • Fernández-Landa J, Santibañez A, Todorovic N, et al. Effects of creatine monohydrate on endurance performance in a trained population: a systematic review and meta-analysis. Sport Med. 2023;53(5):1017–1027. In press. doi: 10.1007/s40279-023-01823-2
  • Forbes SC, Candow DG, Neto JHF, et al. Creatine supplementation and endurance performance: surges and sprints to win the race. J Int Soc Sports Nutr. 2023;20(1). doi: 10.1080/15502783.2023.2204071
  • Crisafulli DL, Buddhadev HH, Brilla LR, et al. Creatine-electrolyte supplementation improves repeated sprint cycling performance: a double blind randomized control study. J Int Soc Sports Nutr. 2018;15(1):1–11. doi: 10.1186/s12970-018-0226-y
  • Tomcik KA, Camera DM, Bone JL, et al. Effects of Creatine and carbohydrate loading on cycling time trial performance. Med Sci Sports Exerc. 2018;50(1):141–150. doi: 10.1249/MSS.0000000000001401
  • Roberts PA, Fox J, Peirce N, et al. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids. 2016;48(8):1831–1842. doi: 10.1007/s00726-016-2252-x
  • Doma K, Ramachandran AK, Boullosa D, et al. The paradoxical effect of creatine monohydrate on muscle damage markers: a systematic review and meta-analysis. Sport Med. 2022;52(7):1623–1645.
  • Poole D, Burnley M, Vanhatalo A, et al. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sport Exerc. 2016;48(11):2320–2334. 10.1249/MSS.0000000000000939
  • Jones AM, Burnley M, Black MI, et al. The maximal metabolic steady state: redefining the ‘gold standard’. Physiol Rep. 2019;7(10):1–16. doi: 10.14814/phy2.14098
  • Jones AM, Wilkerson DP, DiMenna F, et al. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2008;294(2):R585–93. doi: 10.1152/ajpregu.00731.2007
  • Alejo LB, Montalvo-Pérez A, Valenzuela PL, et al. Comparative analysis of endurance, strength and body composition indicators in professional, under-23 and junior cyclists. Front Physiol. 2022;13:945552. doi: 10.3389/fphys.2022.945552
  • Lillo-Bevia J, Pallarés J. Validity and reliability of the cycleops hammer cycle ergometer. Int J Sport Physiol Perform. 2018;13(7):853–859. doi: 10.1123/ijspp.2017-0403
  • De Pauw K, Roelands B, Cheung SS, et al. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–122. doi: 10.1123/ijspp.8.2.111
  • Margolis LM, Allen JT, Hatch-McChesney A, et al. Coingestion of carbohydrate and protein on muscle glycogen synthesis after exercise. Med Sci Sport Exerc. 2020;53(2):384–393. doi: 10.1249/MSS.0000000000002476
  • Valenzuela PL, Morales JS, Foster C, et al. Is the Functional Threshold Power (FTP) a valid surrogate of the lactate threshold? Int J Sport Physiol Perform. 2018;13(10):1293–1298. doi: 10.1123/ijspp.2018-0008
  • Rabbani A, Clemente FM, Kargarfard M, et al. Match fatigue time-course assessment over four days: usefulness of the Hooper index and heart rate variability in professional soccer players. Front Physiol. 2019;10:10. doi: 10.3389/fphys.2019.00109
  • Pueo B, Penichet-Tomas A, Jimenez-Olmedo JM. Reliability and validity of the Chronojump open-source jump mat system. Biol Sport. 2020;37(3):255–259. doi: 10.5114/biolsport.2020.95636
  • Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sport Exerc. 2011;43(9):1725–1734. doi: 10.1249/MSS.0b013e318213f880
  • McLester CN, Nickerson BS, Kliszczewicz BM, et al. Reliability and agreement of various Inbody body composition analyzers as compared to dual-energy X-Ray absorptiometry in healthy men and women. J Clin Densitom. 2020;23(3):443–450.
  • Esco MR, Snarr RL, Leatherwood MD, et al. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J Strength Cond Res. 2015;29(4):918–925. doi: 10.1519/JSC.0000000000000732
  • Herberts T, Slater G, Farley A, et al. Protocol standardization may improve precision error of InBody 720 body composition analysis. Int J Sport Nutr Exerc Metab. 2023;33(4):222–229.
  • Galbraith A, Hopker J, Lelliott S, et al. A single-visit field test of critical speed. Int J Sport Physiol Perform. 2014;9(6):931–935. https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01787161/full
  • Triska C, Tschan H, Tazreiter G, et al. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. 2015;36(13):1063–1068. doi: 10.1055/s-0035-1549958
  • Karsten B, Jobson SA, Hopker J, et al. Validity and reliability of critical power field testing. Eur J Appl Physiol. 2015;115(1):197–204. doi: 10.1007/s00421-014-3001-z
  • Valenzuela PL, Alejo LB, Montalvo-Pérez A, et al. Relationship between critical power and different lactate threshold markers in recreational cyclists. Front Physiol. 2021;12. doi: 10.3389/fphys.2021.676484
  • Mattioni Maturana F, Fontana FY, Pogliaghi S, et al. Critical power: how different protocols and models affect its determination. J Sci Med Sport. 2018;21(7):742–747. doi: 10.1016/j.jsams.2017.11.015
  • Etxebarria N, D’Auria S, Anson JM, et al. Variability in power output during cycling in international Olympic-distance triathlon. Int J Sports Physiol Perform. 2014;9(4):732–734. doi: 10.1123/ijspp.2013-0303
  • van Erp T, Sanders D. Demands of professional cycling races: influence of race category and result. Eur J Sport Sci. 2020;21(5):666–677. doi: 10.1080/17461391.2020.1788651
  • Muriel X, Valenzuela P, Mateo-March M, et al. Physical demands and performance indicators in male professional cyclists during a grand tour: WorldTour vs ProTeam category. Int J Sport Physiol Perform. 2021;17(1):22–30. In press. doi: 10.1123/ijspp.2021-0082
  • Nelson AG, Arnall DA, Kokkonen J, et al. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exerc. 2001;33:1096–1100. doi: 10.1097/00005768-200107000-00005
  • van Loon LJC, Murphy R, Oosterlaar AM, et al. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci (Lond). 2004;106(1):99–106.
  • Vandenberghe K, Goris M, Van Hecke P, et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol. 1997;83(6):2055–2063. doi: 10.1152/jappl.1997.83.6.2055
  • Ribeiro F, Longobardi I, Perim P, et al. Timing of creatine supplementation around exercise: a real concern? Nutrients. 2021;13(8):1–14. doi: 10.3390/nu13082844
  • Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr. 2013;10(1):1. doi: 10.1186/1550-2783-10-36
  • Robinson TM, Sewell DA, Hultman E, et al. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol. 1999;87(2):598–604. doi: 10.1152/jappl.1999.87.2.598
  • Cribb PJ, Hayes A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–1925. doi: 10.1249/01.mss.0000233790.08788.3e
  • Candow DG, Vogt E, Johannsmeyer S, et al. Strategic creatine supplementation and resistance training in healthy older adults. Appl Physiol Nutr Metab. 2015;40(7):689–694. doi: 10.1139/apnm-2014-0498