Publication Cover
Journal of Dual Diagnosis
research and practice in substance abuse comorbidity
Volume 16, 2020 - Issue 1: Cannabis
694
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Interaction of Cannabis Use and Aging: From Molecule to Mind

, PhD, , BS, BA & , PhD

References

  • Abuhasira, R., Schleider, L. B., Mechoulam, R., & Novack, V. (2018). Epidemiological characteristics, safety and efficacy of medical cannabis in the elderly. European Journal of Internal Medicine, 49, 44–50. doi:10.1016/j.ejim.2018.01.019
  • Acquas, E., Pisanu, A., Marrocu, P., & Di Chiara, G. (2000). Cannabinoid CB1 receptor agonists increase rat cortical and hippocampal acetylcholine release in vivo. European Journal of Pharmacology, 401(2), 179–185. doi:10.1016/S0014-2999(00)00403-9
  • Agnati, L. F., Fuxe, K., Zoli, M., Ozini, I., Toffano, G., & Ferraguti, F. (1986). A correlation analysis of the regional distribution of central enkephalin and beta-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: The volume transmission and the wiring transmission. Acta Physiologica Scandinavica, 128(2), 201–207. doi:10.1111/j.1748-1716.1986.tb07967.x
  • Aguado, T., Monory, K., Palazuelos, J., Stella, N., Cravatt, B., Lutz, B., … Galve-Roperh, I. (2005). The endocannabinoid system drives neural progenitor proliferation. The FASEB Journal, 19(12), 1704–1706. doi:10.1096/fj.05-3995fje
  • Ahmad, T., Lauzon, N. M., de Jaeger, X., & Laviolette, S. R. (2013). Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms. The Journal of Neuroscience, 33(39), 15642–15651. doi:10.1523/JNEUROSCI.1686-13.2013
  • Akers, K. G., Martinez-Canabal, A., Restivo, L., Yiu, A. P., De Cristofaro, A., Hsiang, H.-L., … Frankland, P. W. (2014). Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science, 344(6184), 598–602. doi:10.1126/science.1248903
  • Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., … Wyss-Coray, T. (2000). Inflammation and Alzheimer's disease. Neurobiology of Aging, 21(3), 383–421.
  • Albayram, O., Alferink, J., Pitsch, J., Piyanova, A., Neitzert, K., Poppensieker, K., … Bilkei-Gorzo, A. (2011). Role of CB1 cannabinoid receptors on gabaergic neurons in brain aging. Proceedings of the National Academy of Sciences of Sciences, 108(27), 11256–11261. doi:10.1073/pnas.1016442108
  • Albayram, O., Bilkei-Gorzo, A., & Zimmer, A. (2012). Loss of CB1 receptors leads to differential age-related changes in reward-driven learning and memory. Frontiers in Aging Neuroscience, 4, 34. doi:10.3389/fnagi.2012.00034
  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381. doi:10.1146/annurev.ne.09.030186.002041
  • Alger, B. E. (2002). Retrograde signaling in the regulation of synaptic transmission: Focus on endocannabinoids. Progress in Neurobiology, 68(4), 247–286.
  • Al-Hasani, R., & Bruchas, M. R. (2011). Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 115(6), 1363–1381. doi:10.1097/ALN.0b013e318238bba6
  • Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region. Neurobiology of Aging, 26(9), 1245–1260. doi:10.1016/j.neurobiolaging.2005.05.023
  • Alzheimer, A. (1911). Þber eigenartige krankheitsfälle des späteren alters. Zeitschrift Für Die Gesamte Neurologie Und Psychiatrie, 4(1), 356–385. doi:10.1007/BF02866241
  • Amenta, F., Zaccheo, D., & Collier, W. L. (1991). Neurotransmitters, neuroreceptors and aging. Mechanisms of Ageing and Development, 61(3), 249–273. doi:10.1016/0047-6374(91)90059-9
  • Amieva, H., Le Goff, M., Millet, X., Orgogozo, J. M., Pérès, K., Barberger-Gateau, P., … Dartigues, J. F. (2008). Prodromal Alzheimer's Disease: Successive emergence of the clinical symptoms. Annals of Neurology, 64(5), 492–498. doi:10.1002/ana.21509
  • Angelucci, F., Ricci, V., Spalletta, G., Pomponi, M., Tonioni, F., Caltagirone, C., & Bria, P. (2008). Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers. European Neuropsychopharmacology, 18(12), 882–887. doi:10.1016/j.euroneuro.2008.07.008
  • Apostolova, L. G., Dutton, R. A., Dinov, I. D., Hayashi, K. M., Toga, A. W., Cummings, J. L., & Thompson, P. M. (2006). Conversion of mild cognitive impairment to Alzheimer Disease predicted by hippocampal atrophy maps. Archives of Neurology, 63(5), 693–699. doi:10.1001/archneur.63.5.693
  • Arévalo‐Martín, A., García‐Ovejero, D., Gomez, O., Rubio‐Araiz, A., Navarro‐Galve, B., Guaza, C., … Molina‐Holgado, F. (2008). CB2 cannabinoid receptors as an emerging target for demyelinating diseases: From neuroimmune interactions to cell replacement strategies. British Journal of Pharmacology, 153(2), 216–225. doi:10.1038/sj.bjp.0707466
  • Arnone, D., Barrick, T. R., Chengappa, S., Mackay, C., Clark, C. A., & Abou-Saleh, M. (2008). Corpus callosum damage in heavy marijuana use: Preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. NeuroImage, 41(3), 1067–1074. doi:10.1016/j.neuroimage.2008.02.064
  • Arora, K., Qualls, S. H., Bobitt, J., Lum, H. D., Milavetz, G., Croker, J., & Kaskie, B. (2019). Measuring attitudes toward medical and recreational cannabis among older adults in Colorado. The Gerontologist, 1–10. doi:10.1093/geront/gnz054
  • Ashton, J. C., & Glass, M. (2007). The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Current Neuropharmacology, 5(2), 73–80. doi:10.2174/157015907780866884
  • Aso, E., Sanchez-Pla, A., Vegas-Lozano, E., Maldonado, R., & Ferrer, I. (2014). Cannabis-Based medicine reduces multiple pathological processes in Abetapp/PS1 mice. Journal of Alzheimer's Disease, 43(3), 977–991. doi:10.3233/JAD-141014
  • Auer, R., Vittinghoff, E., Yaffe, K., Künzi, A., Kertesz, S. G., Levine, D. A., … Pletcher, M. J. (2016). Association between lifetime marijuana use and cognitive function in middle age: The coronary artery risk development in young adults (CARDIA) study. JAMA Internal Medicine, 176(3), 352–361. doi:10.1001/jamainternmed.2015.7841
  • Azaryan, A. V., Clock, B. J., & Cox, B. M. (1996). Mu opioid receptor mRNA in nucleus accumbens is elevated following dopamine receptor activation. Neurochemical Research, 21(11), 1411–1415. doi:10.1007/BF02532382
  • Backman, L., Ginovart, N., Dixon, R. A., Wahlin, T. B., Wahlin, A., Halldin, C., & Farde, L. (2000). Age-Related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157(4), 635–637. doi:10.1176/ajp.157.4.635
  • Bäckman, L., Karlsson, S., Fischer, H., Karlsson, P., Brehmer, Y., Rieckmann, A., … Nyberg, L. (2011). Dopamine D1 receptors and age differences in brain activation during working memory. Neurobiology of Aging, 32(10), 1849–1856. doi:10.1016/j.neurobiolaging.2009.10.018
  • Baker, D. J., & Petersen, R. C. (2018). Cellular senescence in brain aging and neurodegenerative diseases: Evidence and perspectives. Journal of Clinical Investigation, 128(4), 1208–1216. doi:10.1172/JCI95145
  • Bambico, F. R., Katz, N., Debonnel, G., & Gobbi, G. (2007). Cannabinoids elicit antidepressant-like behavior and activate serotonergic neurons through the medial prefrontal cortex. Journal of Neuroscience, 27(43), 11700–11711. doi:10.1523/JNEUROSCI.1636-07.2007
  • Barnes, C. A., & McNaughton, B. L. (1980). Physiological compensation for loss of afferent synapses in rat hippocampal granule cells during senescence. The Journal of Physiology, 309(1), 473–485. doi:10.1113/jphysiol.1980.sp013521
  • Barnes, C., Rao, G., & Houston, F. (2000). LTP induction threshold change in old rats at the perforant path–granule cell synapse. Neurobiology of Aging, 21(5), 613–620. doi:10.1016/S0197-4580(00)00163-9
  • Bartsch, T., & Wulff, P. (2015). The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience, 309, 1–16. doi:10.1016/j.neuroscience.2015.07.084
  • Basbaum, A. I., & Fields, H. L. (1984). Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annual Review of Neuroscience, 7(1), 309–338. doi:10.1146/annurev.ne.07.030184.001521
  • Beale, C., Broyd, S. J., Chye, Y., Suo, C., Schira, M., Galettis, P., … Solowij, N. (2018). Prolonged cannabidiol treatment effects on hippocampal subfield volumes in current cannabis users. Cannabis and Cannabinoid Research, 3(1), 94–107. doi:10.1089/can.2017.0047
  • Becker, B., Wagner, D., Gouzoulis-Mayfrank, E., Spuentrup, E., & Daumann, J. (2010). Altered parahippocampal functioning in cannabis users is related to the frequency of use. Psychopharmacology, 209(4), 361–374. doi:10.1007/s00213-010-1805-z
  • Berghuis, P., Dobszay, M. B., Wang, X., Spano, S., Ledda, F., Sousa, K. M., … Harkany, T. (2005). Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proceedings of the National Academy of Sciences of Sciences, 102(52), 19115–19120. doi:10.1073/pnas.0509494102
  • Berghuis, P., Rajnicek, A. M., Morozov, Y. M., Ross, R. A., Mulder, J., Urban, G. M., … Harkany, T. (2007). Hardwiring the brain: Endocannabinoids shape neuronal connectivity. Science, 316(5828), 1212–1216. doi:10.1126/science.1137406
  • Berke, J. D., & Hyman, S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 25(3), 515–532. doi:10.1016/S0896-6273(00)81056-9
  • Berrendero, F., Romero, J., Garcı́a-Gil, L., Suarez, I., De la Cruz, P., Ramos, J. A., & Fernández-Ruiz, J. J. (1998). Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1407(3), 205–214. doi:10.1016/S0925-4439(98)00042-8
  • Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 33–84. doi:10.1016/S0165-0173(03)00143-7
  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369. doi:10.1016/S0165-0173(98)00019-8
  • Berry, A. S., Shah, V. D., Baker, S. L., Vogel, J. W., O'Neil, J. P., Janabi, M., … Jagust, W. J. (2016). Aging affects dopaminergic neural mechanisms of cognitive flexibility. The Journal of Neuroscience, 36(50), 12559–12569. doi:10.1523/JNEUROSCI.0626-16.2016
  • Bhattacharyya, S., Morrison, P. D., Fusar-Poli, P., Martin-Santos, R., Borgwardt, S., Winton-Brown, T., … McGuire, P. K. (2010). Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology. Neuropsychopharmacology, 35(3), 764–774. doi:10.1038/npp.2009.184
  • Bilkei-Gorzo, A. (2012). The endocannabinoid system in normal and pathological brain ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1607), 3326–3341. doi:10.1098/rstb.2011.0388
  • Bilkei-Gorzo, A., Albayram, O., Draffehn, A., Michel, K., Piyanova, A., Oppenheimer, H., … Zimmer, A. (2017). A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nature Medicine, 23(6), 782–787. doi:10.1038/nm.4311
  • Bilkei-Gorzo, A., Drews, E., Albayram, Ö., Piyanova, A., Gaffal, E., Tueting, T., … Zimmer, A. (2012). Early onset of aging-like changes is restricted to cognitive abilities and skin structure in cnr1−/− mice. Neurobiology of Aging, 33(1), 200.e11–22. doi:10.1016/j.neurobiolaging.2010.07.009
  • Black, P., & Joseph, L. J. (2014). Still dazed and confused: Midlife marijuana use by the Baby Boom Generation. Deviant Behavior, 35(10), 822–841. doi:10.1080/01639625.2014.889994
  • Blier, P., & de Montigny, C. (1999). Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology, 21(2), 91S–98S. doi:10.1016/S0893-133X(99)00036-6
  • Bloomfield, M. A., Ashok, A. H., Volkow, N. D., & Howes, O. D. (2016). The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature, 539(7629), 369–377. doi:10.1038/nature20153
  • Bloomfield, M. A., Morgan, C. J., Kapur, S., Curran, H. V., & Howes, O. D. (2014). The link between dopamine function and apathy in cannabis users: An [18 F]-DOPA PET imaging study. Psychopharmacology, 231(11), 2251–2259. doi:10.1007/s00213-014-3523-4
  • Bohme, G., Laville, M., Ledent, C., Parmentier, M., & Imperato, A. (1999). Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience, 95(1), 5–7. doi:10.1016/S0306-4522(99)00483-2
  • Boileau, I., Mansouri, E., Williams, B., Le Foll, B., Rusjan, P., Mizrahi, R., … Tong, J. (2016). Fatty acid amide hydrolase binding in brain of cannabis users: Imaging with the novel radiotracer [11C]CURB. Biological Psychiatry, 80(9), 691–701. doi:10.1016/j.biopsych.2016.04.012
  • Bolla, K. I., Brown, K., Eldreth, D., Tate, K., & Cadet, J. (2002). Dose-related neurocognitive effects of marijuana use. Neurology, 59(9), 1337–1343. doi:10.1212/01.wnl.0000031422.66442.49
  • Bonnet, A. E., & Marchalant, Y. (2015). Potential therapeutical contributions of the endocannabinoid system towards aging and Alzheimer's disease. Aging and Disease, 6(5), 400–405. doi:10.14336/AD.2015.0617
  • Bossong, M. G., van Berckel, B. N., Boellaard, R., Zuurman, L., Schuit, R. C., Windhorst, A. D., … Kahn, R. S. (2009). Δ9-Tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology, 34(3), 759–766. doi:10.1038/npp.2008.138
  • Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., … Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proceedings of the National Academy of Sciences, 112(37), 11678–11683. doi:10.1073/pnas.1422487112
  • Brewer, J. A., & Potenza, M. N. (2008). The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochemical Pharmacology, 75(1), 63–75. doi:10.1016/j.bcp.2007.06.043
  • Broyd, S. J., van Hell, H. H., Beale, C., Yucel, M., & Solowij, N. (2016). Acute and chronic effects of cannabinoids on human cognition-a systematic review. Biological Psychiatry, 79(7), 557–567. doi:10.1016/j.biopsych.2015.12.002
  • Brumback, T., Castro, N., Jacobus, J., & Tapert, S. (2016). Effects of marijuana use on brain structure and function: Neuroimaging findings from a neurodevelopmental perspective. International Review of Neurobiology, 129, 33–65. doi:10.1016/bs.irn.2016.06.004
  • Buckner, R. L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195–208. doi:10.1016/j.neuron.2004.09.006
  • Burggren, A. C., Siddarth, P., Mahmood, Z., London, E. D., Harrison, T. M., Merrill, D. A., … Bookheimer, S. Y. (2018). Subregional hippocampal thickness abnormalities in older adults with a history of heavy cannabis use. Cannabis and Cannabinoid Research, 3(1), 242–251. doi:10.1089/can.2018.0035
  • Burke, S. N., & Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nature Reviews Neuroscience, 7(1), 30–40. doi:10.1038/nrn1809
  • Bushlin, I., Rozenfeld, R., & Devi, L. A. (2010). Cannabinoid-opioid interactions during neuropathic pain and analgesia. Current Opinion in Pharmacology, 10(1), 80–86. doi:10.1016/j.coph.2009.09.009
  • Butovsky, E., Juknat, A., Goncharov, I., Elbaz, J., Eilam, R., Zangen, A., & Vogel, Z. (2005). In vivo up‐regulation of brain‐derived neurotrophic factor in specific brain areas by chronic exposure to Δ9‐tetrahydrocannabinol. Journal of Neurochemistry, 93(4), 802–811. doi:10.1111/j.1471-4159.2005.03074.x
  • Buxbaum, D. (1972). Analgesic activity of 9-tetrahydrocannabinol in the rat and mouse. Psychopharmacologia, 25(3), 275–280.
  • Calabrese, E. J., & Rubio-Casillas, A. (2018). Biphasic effects of THC in memory and cognition. European Journal of Clinical Investigation, 48(5), e12920. doi:10.1111/eci.12920
  • Camandola, S., & Mattson, M. P. (2017). Brain metabolism in health, aging, and neurodegeneration. The Embo Journal, 36(11), 1474–1492. doi:10.15252/embj.201695810
  • Cao, C., Li, Y., Liu, H., Bai, G., Mayl, J., Lin, X., … Cai, J. (2014). The potential therapeutic effects of THC on Alzheimer's Disease. Journal of Alzheimer's Disease, 42(3), 973–984. doi:10.3233/JAD-140093
  • Carliner, H., Brown, Q. L., Sarvet, A. L., & Hasin, D. S. (2017). Cannabis use, attitudes, and legal status in the US: A review. Preventive Medicine, 104, 13–23. doi:10.1016/j.ypmed.2017.07.008
  • Carracedo, A., Geelen, M. J., Diez, M., Hanada, K., Guzman, M., & Velasco, G. (2004). Ceramide sensitizes astrocytes to oxidative stress: Protective role of cannabinoids. Biochemical Journal, 380(2), 435–440. doi:10.1042/bj20031714
  • Carroll, C., Zeissler, M. L., Hanemann, C., & Zajicek, J. (2012). Δ9‐tetrahydrocannabinol (Δ9‐THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson's Disease. Neuropathology and Applied Neurobiology, 38(6), 535–547. doi:10.1111/j.1365-2990.2011.01248.x
  • Carta, G., Nava, F., & Gessa, G. L. (1998). Inhibition of hippocampal acetylcholine release after acute and repeated delta9-tetrahydrocannabinol in rats. Brain Research, 809(1), 1–4. doi:10.1016/S0006-8993(98)00738-0
  • Carvalho, A. F., Mackie, K., & Van Bockstaele, E. J. (2010). Cannabinoid modulation of limbic forebrain noradrenergic circuitry. European Journal of Neuroscience, 31(2), 286–301. doi:10.1111/j.1460-9568.2009.07054.x
  • Cascini, F., Aiello, C., & Di Tanna, G. (2012). Increasing delta-9-tetrahydrocannabinol (Delta-9-THC) content in herbal cannabis over time: Systematic review and meta-analysis. Current Drug Abuse Reviews, 5(1), 32–40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22150622.
  • Castillo, A., Tolón, M., Fernández-Ruiz, J., Romero, J., & Martinez-Orgado, J. (2010). The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic–ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiology of Disease, 37(2), 434–440. doi:10.1016/j.nbd.2009.10.023
  • Castillo, P. E., Younts, T. J., Chavez, A. E., & Hashimotodani, Y. (2012). Endocannabinoid signaling and synaptic function. Neuron, 76(1), 70–81. doi:10.1016/j.neuron.2012.09.020
  • Casu, M. A., Pisu, C., Sanna, A., Tambaro, S., Spada, G. P., Mongeau, R., & Pani, L. (2005). Effect of delta9-tetrahydrocannabinol on phosphorylated creb in rat cerebellum: An immunohistochemical study. Brain Research, 1048(1-2), 41–47. doi:10.1016/j.brainres.2005.04.053
  • Ceccarini, J., Kuepper, R., Kemels, D., van Os, J., Henquet, C., & Van Laere, K. (2015). [18F] MK‐9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addiction Biology, 20(2), 357–367. doi:10.1111/adb.12116
  • Cha, Y. M., Jones, K. H., Kuhn, C. M., Wilson, W. A., & Swartzwelder, H. S. (2007). Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behavioural Pharmacology, 18(5-6), 563–569. doi:10.1097/FBP.0b013e3282ee7b7e
  • Chamberlain, S. R., Muller, U., Blackwell, A. D., Robbins, T. W., & Sahakian, B. J. (2006). Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology, 188(4), 397–407. doi:10.1007/s00213-006-0391-6
  • Chang, L., Yakupov, R., Cloak, C., & Ernst, T. (2006). Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain, 129(5), 1096–1112. doi:10.1093/brain/awl064
  • Chau, D. L., Walker, V., Pai, L., & Cho, L. M. (2008). Opiates and elderly: Use and side effects. Clinical Interventions in Aging, 3(2), 273–278.
  • Chen, J., Paredes, W., Li, J., Smith, D., Lowinson, J., & Gardner, E. L. (1990). Δ9-Tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis. Psychopharmacology, 102(2), 156–162. doi:10.1007/BF02245916
  • Chevaleyre, V., Takahashi, K. A., & Castillo, P. E. (2006). Endocannabinoid-Mediated synaptic plasticity in the CNS. Annual Review of Neuroscience, 29(1), 37–76. doi:10.1146/annurev.neuro.29.051605.112834
  • Childs, E., Lutz, J. A., & de Wit, H. (2017). Dose-Related effects of delta-9-THC on emotional responses to acute psychosocial stress. Drug and Alcohol Dependence, 177, 136–144. doi:10.1016/j.drugalcdep.2017.03.030
  • Choi, I. Y., Ju, C., Anthony Jalin, A. M., Lee, D. I., Prather, P. L., & Kim, W. K. (2013). Activation of cannabinoid CB2 Receptor-Mediated AMPK/CREB pathway reduces cerebral ischemic injury. The American Journal of Pathology, 182(3), 928–939. doi:10.1016/j.ajpath.2012.11.024
  • Choi, N. G., DiNitto, D. M., & Marti, C. N. (2016). Older-Adult marijuana users and ex-users: Comparisons of sociodemographic characteristics and mental and substance use disorders. Drug and Alcohol Dependence, 165, 94–102. doi:10.1016/j.drugalcdep.2016.05.023
  • Choi, N. G., DiNitto, D. M., Marti, C. N., & Choi, B. Y. (2016). Relationship between marijuana and other illicit drug use and depression/suicidal thoughts among late middle-aged and older adults. International Psychogeriatrics, 28(4), 577–589. doi:10.1017/S1041610215001738
  • Chung, Y. C., Shin, W.-H., Baek, J. Y., Cho, E. J., Baik, H. H., Kim, S. R., … Jin, B. K. (2016). CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. Experimental & Molecular Medicine, 48(1), e205. doi:10.1038/emm.2015.100
  • Chye, Y., Christensen, E., Solowij, N., & Yücel, M. (2019). The endocannabinoid system and cannabidiol’s promise for the treatment of substance use disorder. Frontiers in Psychiatry, 10, 63. doi:10.3389/fpsyt.2019.00063
  • Chye, Y., Suo, C., Yucel, M., den Ouden, L., Solowij, N., & Lorenzetti, V. (2017). Cannabis-Related hippocampal volumetric abnormalities specific to subregions in dependent users. Psychopharmacology, 234(14), 2149–2157. doi:10.1007/s00213-017-4620-y
  • Cichewicz, D. L., & McCarthy, E. A. (2003). Antinociceptive synergy between δ9-tetrahydrocannabinol and opioids after oral administration. Journal of Pharmacology and Experimental Therapeutics, 304(3), 1010–1015. doi:10.1124/jpet.102.045575
  • Cichewicz, D. L., Martin, Z. L., Smith, F. L., & Welch, S. P. (1999). Enhancement mu opioid antinociception by oral delta9-tetrahydrocannabinol: Dose-response analysis and receptor identification. Journal of Pharmacology and Experimental Therapeutics, 289(2), 859–867. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10215664
  • Colasanti, A., Rabiner, E. A., Lingford-Hughes, A., & Nutt, D. J. (2011). Opioids and anxiety. Journal of Psychopharmacology, 25(11), 1415–1433. doi:10.1177/0269881110367726
  • Compton, W. M., Han, B., Jones, C. M., Blanco, C., & Hughes, A. (2016). Marijuana use and use disorders in adults in the USA, 2002–14: Analysis of annual cross-sectional surveys. The Lancet Psychiatry, 3(10), 954–964. doi:10.1016/S2215-0366(16)30208-5
  • Conner, J. M., Franks, K. M., Titterness, A. K., Russell, K., Merrill, D. A., Christie, B. R., … Tuszynski, M. H. (2009). NGF is essential for hippocampal plasticity and learning. Journal of Neuroscience, 29(35), 10883–10889. doi:10.1523/JNEUROSCI.2594-09.2009
  • Cools, R. (2006). Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease. Neuroscience & Biobehavioral Reviews, 30(1), 1–23. doi:10.1016/j.neubiorev.2005.03.024
  • Cooper, Z. D., & Haney, M. (2009). Actions of delta-9-tetrahydrocannabinol in cannabis: Relation to use, abuse, dependence. International Review of Psychiatry, 21(2), 104–112. doi:10.1080/09540260902782752
  • Corchero, J., Fuentes, J. A., & Manzanares, J. (1999). Chronic treatment with CP-55,940 regulates corticotropin releasing factor and proopiomelanocortin gene expression in the hypothalamus and pituitary gland of the rat. Life Sciences, 64(11), 905–911. doi:10.1016/S0024-3205(99)00016-8
  • Corchero, J., Manzanares, J., & Fuentes, J. A. (2004). Cannabinoid/Opioid crosstalk in the central nervous system. Critical Reviews™ in Neurobiology, 16(1-2), 159–172. doi:10.1615/CritRevNeurobiol.v16.i12.170
  • Cornelius, J. R., Aizenstein, H. J., & Hariri, A. R. (2010). Amygdala reactivity is inversely related to level of cannabis use in individuals with comorbid cannabis dependence and major depression. Addictive Behaviors, 35(6), 644–646. doi:10.1016/j.addbeh.2010.02.004
  • Cousijn, J., Wiers, R. W., Ridderinkhof, K. R., van den Brink, W., Veltman, D. J., & Goudriaan, A. E. (2012). Grey matter alterations associated with cannabis use: Results of a VBM study in heavy cannabis users and healthy controls. NeuroImage, 59(4), 3845–3851. doi:10.1016/j.neuroimage.2011.09.046
  • Crippa, J. A., Zuardi, A. W., Martin-Santos, R., Bhattacharyya, S., Atakan, Z., McGuire, P., & Fusar-Poli, P. (2009). Cannabis and anxiety: A critical review of the evidence. Human Psychopharmacology: Clinical and Experimental, 24(7), 515–523. doi:10.1002/hup.1048
  • Croll, S. D., Ip, N. Y., Lindsay, R. M., & Wiegand, S. J. (1998). Expression of BDNF and trkB as a function of age and cognitive performance. Brain Research, 812(1–2), 200–208. doi:10.1016/S0006-8993(98)00993-7
  • Cuttler, C., Mischley, L. K., & Sexton, M. (2016). Sex differences in cannabis use and effects: A cross-sectional survey of cannabis users. Cannabis and Cannabinoid Research, 1(1), 166–175. doi:10.1089/can.2016.0010
  • Cuttler, C., Spradlin, A., Nusbaum, A. T., Whitney, P., Hinson, J. M., & McLaughlin, R. J. (2017). Blunted stress reactivity in chronic cannabis users. Psychopharmacology, 234(15), 2299–2309. doi:10.1007/s00213-017-4648-z
  • Dauer, W., & Przedborski, S. (2003). Parkinson's disease: Mechanisms and models. Neuron, 39(6), 889–909. doi:10.1016/S0896-6273(03)00568-3
  • Davies, S. N., Pertwee, R. G., & Riedel, G. (2002). Functions of cannabinoid receptors in the hippocampus. Neuropharmacology, 42(8), 993–1007. R doi:10.1016/S0028-3908(02)00060-6
  • De Fonseca, F. R., Gorriti, M., Fernandez-Ruiz, J., Palomo, T., & Ramos, J. (1994). Downregulation of rat brain cannabinoid binding sites after chronic Δ9-tetrahydrocannabinol treatment. Pharmacology Biochemistry and Behavior, 47(1), 33–40. doi:10.1016/0091-3057(94)90108-2
  • De Keyser, J., Ebinger, G., & Vauquelin, G. (1990). Age-related changes in the human nigrostriatal dopaminergic system. Annals of Neurology, 27(2), 157–161. doi:10.1002/ana.410270210
  • De Vries, T. J., Homberg, J. R., Binnekade, R., Raaso, H., & Schoffelmeer, A. N. M. (2003). Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology, 168(1-2), 164–169. doi:10.1007/s00213-003-1422-1
  • Degenhardt, L., Hall, W., & Lynskey, M. (2001). The relationship between cannabis use and other substance use in the general population. Drug and Alcohol Dependence, 64(3), 319–327. doi:10.1016/S0376-8716(01)00130-2
  • Degenhardt, L., Hall, W., & Lynskey, M. (2003). Exploring the association between cannabis use and depression. Addiction, 98(11), 1493–1504. doi:10.1046/j.1360-0443.2003.00437.x
  • Degenhardt, L., Lintzeris, N., Campbell, G., Bruno, R., Cohen, M., Farrell, M., & Hall, W. D. (2015). Experience of adjunctive cannabis use for chronic non-cancer pain: Findings from the pain and opioids in treatment (point) study. Drug and Alcohol Dependence, 147, 144–150. doi:10.1016/j.drugalcdep.2014.11.031
  • Degroot, A., & Nomikos, G. G. (2007). In vivo neurochemical effects induced by changes in endocannabinoid neurotransmission. Current Opinion in Pharmacology, 7(1), 62–68. doi:10.1016/j.coph.2006.11.001
  • Degroot, A., Köfalvi, A., Wade, M. R., Davis, R. J., Rodrigues, R. J., Rebola, N., … Nomikos, G. G. (2006). CB1 receptor antagonism increases hippocampal acetylcholine release: Site and mechanism of action. Molecular Pharmacology, 70(4), 1236–1245. doi:10.1124/mol.106.024661
  • Demirakca, T., Sartorius, A., Ende, G., Meyer, N., Welzel, H., Skopp, G., … Hermann, D. (2011). Diminished gray matter in the hippocampus of cannabis users: Possible protective effects of cannabidiol. Drug and Alcohol Dependence, 114(2-3), 242–245. doi:10.1016/j.drugalcdep.2010.09.020
  • Dennis, N. A., Daselaar, S., & Cabeza, R. (2007). Effects of aging on transient and sustained successful memory encoding activity. Neurobiology of Aging, 28(11), 1749–1758. doi:10.1016/j.neurobiolaging.2006.07.006
  • Devane, W. A., Dysarz, F. A., 3rd, Johnson, M. R., Melvin, L. S., & Howlett, A. C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. Molecular Pharmacology, 34(5), 605–613. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2848184
  • Diana, M., Melis, M., Muntoni, A. L., & Gessa, G. L. (1998). Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proceedings of the National Academy of Sciences of Sciences, 95(17), 10269–10273. doi:10.1073/pnas.95.17.10269
  • Dolan, R. J., & Fletcher, P. C. (1997). Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature, 388(6642), 582–585. doi:10.1038/41561
  • Douaud, G., Groves, A. R., Tamnes, C. K., Westlye, L. T., Duff, E. P., Engvig, A., … Johansen-Berg, H. (2014). A common brain network links development, aging, and vulnerability to disease. Proceedings of the National Academy of Sciences, 111(49), 17648–17653. doi:10.1073/pnas.1410378111
  • Dreher, J. C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences of Sciences, 105(39), 15106–15111. doi:10.1073/pnas.0802127105
  • Driscoll, I., Howard, S. R., Stone, J. C., Monfils, M. H., Tomanek, B., Brooks, W. M., & Sutherland, R. J. (2006). The aging hippocampus: A multi-level analysis in the rat. Neuroscience, 139(4), 1173–1185. doi:10.1016/j.neuroscience.2006.01.040
  • Drolet, G., Dumont, E. C., Gosselin, I., Kinkead, R., Laforest, S., & Trottier, J. F. (2001). Role of endogenous opioid system in the regulation of the stress response. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 25(4), 729–741. doi:10.1016/S0278-5846(01)00161-0
  • D’Souza, D. C., Cortes-Briones, J. A., Ranganathan, M., Thurnauer, H., Creatura, G., Surti, T., … Skosnik, P. D. (2016). Rapid changes in cannabinoid 1 receptor availability in cannabis-dependent male subjects after abstinence from cannabis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(1), 60–67. doi:10.1016/j.bpsc.2015.09.008
  • D’Souza, D. C., Perry, E., MacDougall, L., Ammerman, Y., Cooper, T., Wu, Y. T., … Krystal, J. H. (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 29(8), 1558–1572. doi:10.1038/sj.npp.1300496
  • D’Souza, D. C., Pittman, B., Perry, E., & Simen, A. (2009). Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology, 202(4), 569–578. doi:10.1007/s00213-008-1333-2
  • ElBatsh, M. M., Moklas, M., Marsden, C., & Kendall, D. (2012). Antidepressant-like effects of Δ9-tetrahydrocannabinol and rimonabant in the olfactory bulbectomised rat model of depression. Pharmacology Biochemistry and Behavior, 102(2), 357–365. doi:10.1016/j.pbb.2012.05.009
  • El-Remessy, A. B., Al-Shabrawey, M., Khalifa, Y., Tsai, N. T., Caldwell, R. B., & Liou, G. I. (2006). Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. The American Journal of Pathology, 168(1), 235–244. doi:10.2353/ajpath.2006.050500
  • ElSohly, M. A., Mehmedic, Z., Foster, S., Gon, C., Chandra, S., & Church, J. C. (2016). Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biological Psychiatry, 79(7), 613–619. doi:10.1016/j.biopsych.2016.01.004
  • Erkkinen, M. G., Kim, M. O., & Geschwind, M. D. (2018). Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology, 10(4), a033118. doi:10.1101/cshperspect.a033118
  • Espejo-Porras, F., Garcia-Toscano, L., Rodriguez-Cueto, C., Santos-Garcia, I., de Lago, E., & Fernandez-Ruiz, J. (2019). Targeting glial cannabinoid CB2 receptors to delay the progression of the pathological phenotype in TDP-43 (A315T) transgenic mice, a model of amyotrophic lateral sclerosis. British Journal of Pharmacology, 176(10), 1585–1600. doi:10.1111/bph.14216
  • Espejo-Porras, F., Piscitelli, F., Verde, R., Ramos, J. A., Di Marzo, V., de Lago, E., & Fernández-Ruiz, J. (2015). Changes in the endocannabinoid signaling system in CNS structures of TDP-43 transgenic mice: Relevance for a neuroprotective therapy in TDP-43-related disorders. Journal of Neuroimmune Pharmacology, 10(2), 233–244. doi:10.1007/s11481-015-9602-4
  • Fagerström, K. O., & Schneider, N. G. (1989). Measuring nicotine dependence: a review of the Fagerstrom Tolerance Questionnaire. Journal of Behavioral Medicine, 12(2), 159–182.
  • Fan, N., Yang, H., Zhang, J., & Chen, C. (2010). Reduced expression of glutamate receptors and phosphorylation of CREB are responsible for in vivo Δ9‐THC exposure‐impaired hippocampal synaptic plasticity. Journal of Neurochemistry, 112(3), 691–702. doi:10.1111/j.1471-4159.2009.06489.x
  • Felder, C. C., & Glass, M. (1998). Cannabinoid receptors and their endogenous agonists. Annual Review of Pharmacology and Toxicology, 38(1), 179–200. doi:10.1146/annurev.pharmtox.38.1.179
  • Ferreira, F. F., Ribeiro, F. F., Rodrigues, R. S., Sebastiao, A. M., & Xapelli, S. (2018). Brain-Derived neurotrophic factor (BDNF) role in cannabinoid-mediated neurogenesis. Frontiers in Cellular Neuroscience, 12, 441. doi:10.3389/fncel.2018.00441
  • Fields, H. L., Heinricher, M. M., & Mason, P. (1991). Neurotransmitters in nociceptive modulatory circuits. Annual Review of Neuroscience, 14(1), 219–245. doi:10.1146/annurev.ne.14.030191.001251
  • Filbey, F. M., & Yezhuvath, U. (2013). Functional connectivity in inhibitory control networks and severity of cannabis use disorder. The American Journal of Drug and Alcohol Abuse, 39(6), 382–391. doi:10.3109/00952990.2013.841710
  • Filbey, F. M., Aslan, S., Calhoun, V. D., Spence, J. S., Damaraju, E., Caprihan, A., & Segall, J. (2014). Long-term effects of marijuana use on the brain. Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16913–16918. doi:10.1073/pnas.1415297111
  • Filbey, F. M., Gohel, S., Prashad, S., & Biswal, B. B. (2018). Differential associations of combined vs. isolated cannabis and nicotine on brain resting state networks. Brain Structure and Function, 223(7), 3317–3326. doi:10.1007/s00429-018-1690-5
  • Filbey, F. M., McQueeny, T., Kadamangudi, S., Bice, C., & Ketcherside, A. (2015). Combined effects of marijuana and nicotine on memory performance and hippocampal volume. Behavioural Brain Research, 293, 46–53. doi:10.1016/j.bbr.2015.07.029
  • Finn, D. P., Jhaveri, M. D., Beckett, S. R., Roe, C. H., Kendall, D. A., Marsden, C. A., & Chapman, V. (2003). Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats. Neuropharmacology, 45(5), 594–604. doi:10.1016/S0028-3908(03)00235-1
  • Fishbein-Kaminietsky, M., Gafni, M., & Sarne, Y. (2014). Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage. Journal of Neuroscience Research, 92(12), 1669–1677. doi:10.1002/jnr.23452
  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Initiative, A. S D. N. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20–40. doi:10.1016/j.pneurobio.2014.02.004
  • Fjell, A. M., Sneve, M. H., Grydeland, H., Storsve, A. B., & Walhovd, K. B. (2016). The disconnected brain and executive function decline in aging. Cerebral Cortex, 27(3), 2303–2317.
  • Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Walhovd, K. B. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 2001–2012. doi:10.1093/cercor/bhn232
  • Foster, T. C., & Kumar, A. (2007). Susceptibility to induction of long-term depression is associated with impaired memory in aged Fischer 344 rats. Neurobiology of Learning and Memory, 87(4), 522–535. doi:10.1016/j.nlm.2006.12.009
  • Fride, E. (2005). Endocannabinoids in the central nervous system: From neuronal networks to behavior. Current Drug Target-CNS & Neurological Disorders, 4(6), 633–642. doi:10.2174/156800705774933069
  • Fujii, M., Sherchan, P., Soejima, Y., Hasegawa, Y., Flores, J., Doycheva, D., & Zhang, J. H. (2014). Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Experimental Neurology, 261, 396–403. doi:10.1016/j.expneurol.2014.07.005
  • Fusar-Poli, P., Crippa, J. A., Bhattacharyya, S., Borgwardt, S. J., Allen, P., Martin-Santos, R., … McGuire, P. K. (2009). Distinct effects of Δ9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Archives of General Psychiatry, 66(1), 95–105. doi:10.1001/archgenpsychiatry.2008.519
  • Gage, F. H. (2002). Neurogenesis in the adult brain. The Journal of Neuroscience, 22(3), 612–613. doi:10.1523/JNEUROSCI.22-03-00612.2002
  • Gallen, C. L., Turner, G. R., Adnan, A., & D'Esposito, M. (2016). Reconfiguration of brain network architecture to support executive control in aging. Neurobiology of Aging, 44, 42–52. doi:10.1016/j.neurobiolaging.2016.04.003
  • Galve-Roperh, I., Aguado, T., Palazuelos, J., & Guzman, M. (2008). Mechanisms of control of neuron survival by the endocannabinoid system. Current Pharmaceutical Design, 14(23), 2279–2288. doi:10.2174/138161208785740117
  • Galve-Roperh, I., Chiurchiu, V., Diaz-Alonso, J., Bari, M., Guzman, M., & Maccarrone, M. (2013). Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Progress in Lipid Research, 52(4), 633–650. doi:10.1016/j.plipres.2013.05.004
  • Gambert, S. R., Garthwaite, T. L., Pontzer, C. H., & Hagen, T. C. (1980). Age-Related changes in central nervous system beta-endorphin and ACTH. Neuroendocrinology, 31(4), 252–255. doi:10.1159/000123083
  • Garcia-Arencibia, M., Gonzalez, S., de Lago, E., Ramos, J. A., Mechoulam, R., & Fernandez-Ruiz, J. (2007). Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: Importance of antioxidant and cannabinoid receptor-independent properties. Brain Research, 1134(1), 162–170. doi:10.1016/j.brainres.2006.11.063
  • Geinisman, Y., de Toledo‐Morrell, L., Morrell, F., Persina, I. S., & Rossi, M. (1992). Age‐related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased stereological dissector technique. Hippocampus, 2(4), 437–444. doi:10.1002/hipo.450020411
  • George, O., Le Moal, M., & Koob, G. F. (2012). Allostasis and addiction: Role of the dopamine and corticotropin-releasing factor systems. Physiology & Behavior, 106(1), 58–64. doi:10.1016/j.physbeh.2011.11.004
  • Ghosh, S., Reuveni, I., Zidan, S., Lamprecht, R., & Barkai, E. (2018). Learning-Induced modulation of the effect of endocannabinoids on inhibitory synaptic transmission. Journal of Neurophysiology, 119(2), 752–760. doi:10.1152/jn.00623.2017
  • Glass, M., Dragunow, M., & Faull, R. L. (1997). Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience, 77(2), 299–318. doi:10.1016/S0306-4522(96)00428-9
  • Goeders, N. E. (2003). The impact of stress on addiction. European Neuropsychopharmacology, 13(6), 435–441. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14636959
  • Gold, B. T., Powell, D. K., Xuan, L., Jicha, G. A., & Smith, C. D. (2010). Age-Related slowing of task switching is associated with decreased integrity of frontoparietal white matter. Neurobiology of Aging, 31(3), 512–522. doi:10.1016/j.neurobiolaging.2008.04.005
  • Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652–669. doi:10.1038/nrn3119
  • Golomb, J., de Leon, M. J., Kluger, A., George, A. E., Tarshish, C., & Ferris, S. H. (1993). Hippocampal atrophy in normal aging. An association with recent memory impairment. Archives of Neurology, 50(9), 967–973. doi:10.1001/archneur.1993.00540090066012
  • Golomb, J., Kluger, A., de Leon, M. J., Ferris, S. H., Mittelman, M., Cohen, J., & George, A. E. (1996). Hippocampal formation size predicts declining memory performance in normal aging. Neurology, 47(3), 810–813. doi:10.1212/WNL.47.3.810
  • Gonzalez, S., Cebeira, M., & Fernandez-Ruiz, J. (2005). Cannabinoid tolerance and dependence: A review of studies in laboratory animals. Pharmacology Biochemistry and Behavior, 81(2), 300–318. doi:10.1016/j.pbb.2005.01.028
  • Goodwin, R. D., Pacek, L. R., Copeland, J., Moeller, S. J., Dierker, L., Weinberger, A., … Hasin, D. S. (2018). Trends in daily cannabis use among cigarette smokers: United States, 2002–2014. American Journal of Public Health, 108(1), 137–142. doi:10.2105/AJPH.2017.304050
  • Goonawardena, A. V., Robinson, L., Hampson, R. E., & Riedel, G. (2010). Cannabinoid and cholinergic systems interact during performance of a short-term memory task in the rat. Learning & Memory, 17(10), 502–511. doi:10.1101/lm.1893710
  • Gopher, D., & Koriat, A. (1999). Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application. Cambridge, MA: MIT Press.
  • Gorzalka, B. B., Hill, M. N., & Hillard, C. J. (2008). Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neuroscience & Biobehavioral Reviews, 32(6), 1152–1160. doi:10.1016/j.neubiorev.2008.03.004
  • Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491–505. doi:10.1038/nrn3256
  • Grady, C. L. (2008). Cognitive neuroscience of aging. Annals of the New York Academy of Sciences, 1124(1), 127–144. doi:10.1196/annals.1440.009
  • Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., & Winocur, G. (2006). Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience, 18(2), 227–241. doi:10.1162/jocn.2006.18.2.227
  • Grant, I., Gonzalez, R., Carey, C. L., Natarajan, L., & Wolfson, T. (2003). Non-acute (residual) neurocognitive effects of cannabis use: A meta-analytic study. Journal of the International Neuropsychological Society, 9(5), 679–689. doi:10.1017/S1355617703950016
  • Green, D. R., Galluzzi, L., & Kroemer, G. (2011). Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science, 333(6046), 1109–1112. doi:10.1126/science.1201940
  • Gruber, S. A., Silveri, M. M., Dahlgren, M. K., & Yurgelun-Todd, D. (2011). Why so impulsive? White matter alterations are associated with impulsivity in chronic marijuana smokers. Experimental and Clinical Psychopharmacology, 19(3), 231–242. doi:10.1037/a0023034
  • Guindon, J., Desroches, J., Dani, M., & Beaulieu, P. (2007). Pre-emptive antinociceptive effects of a synthetic cannabinoid in a model of neuropathic pain. European Journal of Pharmacology, 568(1-3), 173–176. doi:10.1016/j.ejphar.2007.04.060
  • Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24(2), 109–117. doi:10.1002/gps.2087
  • Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., & Park, D. C. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial-temporal activity. Journal of Cognitive Neuroscience, 17(1), 84–96. doi:10.1162/0898929052880048
  • Hampson, A. J., Grimaldi, M., Axelrod, J., & Wink, D. (1998). Cannabidiol and (-)delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proceedings of the National Academy of Sciences, 95(14), 8268–8273. doi:10.1073/pnas.95.14.8268
  • Han, B. H., Sherman, S., Mauro, P. M., Martins, S. S., Rotenberg, J., & Palamar, J. J. (2017). Demographic trends among older cannabis users in the United States, 2006–13. Addiction, 112(3), 516–525. doi:10.1111/add.13670
  • Haney, M. (2007). Opioid antagonism of cannabinoid effects: Differences between marijuana smokers and nonmarijuana smokers. Neuropsychopharmacology, 32(6), 1391–1403. doi:10.1038/sj.npp.1301243
  • Harding, I. H., Solowij, N., Harrison, B. J., Takagi, M., Lorenzetti, V., Lubman, D. I., … Yücel, M. (2012). Functional connectivity in brain networks underlying cognitive control in chronic cannabis users. Neuropsychopharmacology, 37(8), 1923–1933. doi:10.1038/npp.2012.39
  • Haring, M., Marsicano, G., Lutz, B., & Monory, K. (2007). Identification of the cannabinoid receptor type 1 in serotonergic cells of raphe nuclei in mice. Neuroscience, 146(3), 1212–1219. doi:10.1016/j.neuroscience.2007.02.021
  • Harkany, T., Mackie, K., & Doherty, P. (2008). Wiring and firing neuronal networks: Endocannabinoids take center stage. Current Opinion in Neurobiology, 18(3), 338–345. doi:10.1016/j.conb.2008.08.007
  • Hartman, R. L., & Huestis, M. A. (2013). Cannabis effects on driving skills. Clinical Chemistry, 59(3), 478–492. doi:10.1373/clinchem.2012.194381
  • Hasin, D. S. (2018). US epidemiology of cannabis use and associated problems. Neuropsychopharmacology, 43(1), 195–212. doi:10.1038/npp.2017.198
  • Hasin, D. S., Saha, T. D., Kerridge, B. T., Goldstein, R. B., Chou, S. P., Zhang, H., … Grant, B. F. (2015). Prevalence of marijuana use disorders in the United States between 2001–2002 and 2012–2013. JAMA Psychiatry, 72(12), 1235–1242. doi:10.1001/jamapsychiatry.2015.1858
  • Heifets, B. D., & Castillo, P. E. (2009). Endocannabinoid signaling and long-term synaptic plasticity. Annual Review of Physiology, 71(1), 283–306. doi:10.1146/annurev.physiol.010908.163149
  • Heneka, M. T., Carson, M. J., Khoury, J. E., Landreth, G. E., Brosseron, F., Feinstein, D. L., … Kummer, M. P. (2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4), 388–405. doi:10.1016/S1474-4422(15)70016-5
  • Heng, L., Beverley, J. A., Steiner, H., & Tseng, K. Y. (2011). Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas. Synapse, 65(4), 278–286. doi:10.1002/syn.20844
  • Hermann, D., & Schneider, M. (2012). Potential protective effects of cannabidiol on neuroanatomical alterations in cannabis users and psychosis: A critical review. Current Pharmaceutical Design, 18(32), 4897–4905. doi:10.2174/138161212802884825
  • Hess, G. D., Joseph, J. A., & Roth, G. S. (1981). Effect of age on sensitivity to pain and brain opiate receptors. Neurobiology of Aging, 2(1), 49–55. doi:10.1016/0197-4580(81)90059-2
  • Hill, M. N., & McEwen, B. S. (2010). Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 34(5), 791–797. doi:10.1016/j.pnpbp.2009.11.001
  • Hill, M. N., & Tasker, J. G. (2012). Endocannabinoid signaling, glucocorticoid-mediated negative feedback, and regulation of the hypothalamic-pituitary-adrenal axis. Neuroscience, 204, 5–16. doi:10.1016/j.neuroscience.2011.12.030
  • Hill, M. N., McLaughlin, R. J., Bingham, B., Shrestha, L., Lee, T. T. Y., Gray, J. M., … Viau, V. (2010). Endogenous cannabinoid signaling is essential for stress adaptation. Proceedings of the National Academy of Sciences, 107(20), 9406–9411. doi:10.1073/pnas.0914661107
  • Hill, M. N., Sun, J. C., Tse, M. T., & Gorzalka, B. B. (2006). Altered responsiveness of serotonin receptor subtypes following long-term cannabinoid treatment. The International Journal of Neuropsychopharmacology, 9(03), 277–286. doi:10.1017/S1461145705005651
  • Hirsch, E. C., & Hunot, S. (2009). Neuroinflammation in Parkinson's disease: A target for neuroprotection? Lancet Neurology, 8(4), 382–397. doi:10.1016/S1474-4422(09)70062-6
  • Hirvonen, J., Goodwin, R. S., Li, C.-T., Terry, G. E., Zoghbi, S. S., Morse, C., … Innis, R. B. (2012). Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Molecular Psychiatry, 17(6), 642–649. doi:10.1038/mp.2011.82
  • Hoffman, A. F., Oz, M., Caulder, T., & Lupica, C. R. (2003). Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. The Journal of Neuroscience, 23(12), 4815–4820. doi:10.1523/JNEUROSCI.23-12-04815.2003
  • Hoffman, A. F., Oz, M., Yang, R., Lichtman, A. H., & Lupica, C. R. (2007). Opposing actions of chronic delta9-tetrahydrocannabinol and cannabinoid antagonists on hippocampal long-term potentiation. Learning & Memory, 14(1–2), 63–74. doi:10.1101/lm.439007
  • Hornykiewicz, O. (1974). The mechanisms of action of L-DOPA in Parkinson's disease. Life Sciences, 15(7), 1249–1259. doi:10.1016/0024-3205(74)90306-3
  • Hurd, Y. L., Michaelides, M., Miller, M. L., & Jutras-Aswad, D. (2014). Trajectory of adolescent cannabis use on addiction vulnerability. Neuropharmacology, 76, 416–424. doi:10.1016/j.neuropharm.2013.07.028
  • Ishibashi, K., Ishii, K., Oda, K., Kawasaki, K., Mizusawa, H., & Ishiwata, K. (2009). Regional analysis of age-related decline in dopamine transporters and dopamine D2-like receptors in human striatum. Synapse, 63(4), 282–290. doi:10.1002/syn.20603
  • Issa, A. M., Rowe, W., Gauthier, S., & Meaney, M. J. (1990). Hypothalamic-Pituitary-Adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. The Journal of Neuroscience, 10(10), 3247–3254. doi:10.1523/JNEUROSCI.10-10-03247.1990
  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Feldman, H. H., Frisoni, G. B., … Dubois, B. (2016). A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 87(5), 539–547. doi:10.1212/WNL.0000000000002923
  • Jakabek, D., Yücel, M., Lorenzetti, V., & Solowij, N. (2016). An MRI study of white matter tract integrity in regular cannabis users: Effects of cannabis use and age. Psychopharmacology, 233(19-20), 3627–3637. doi:10.1007/s00213-016-4398-3
  • Jankowski, M. P., & Sesack, S. R. (2004). Prefrontal cortical projections to the rat dorsal raphe nucleus: Ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. The Journal of Comparative Neurology, 468(4), 518–529. doi:10.1002/cne.10976
  • Jiang, W., Zhang, Y., Xiao, L., Van Cleemput, J., Ji, S.-P., Bai, G., & Zhang, X. (2005). Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic-and antidepressant-like effects. Journal of Clinical Investigation, 115(11), 3104–3116. doi:10.1172/JCI25509
  • Jimenez-Del-Rio, M., Daza-Restrepo, A., & Velez-Pardo, C. (2008). The cannabinoid CP55,940 prolongs survival and improves locomotor activity in drosophila melanogaster against Paraquat: Implications in Parkinson's Disease. Neuroscience Research, 61(4), 404–411. doi:10.1016/j.neures.2008.04.011
  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. New York: McGraw-Hill.
  • Karrer, T. M., Josef, A. K., Mata, R., Morris, E. D., & Samanez-Larkin, G. R. (2017). Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: A meta-analysis. Neurobiology of Aging, 57, 36–46. doi:10.1016/j.neurobiolaging.2017.05.006
  • Kaskie, B., Ayyagari, P., Milavetz, G., Shane, D., & Arora, K. (2017). The increasing use of cannabis among older Americans: A public health crisis or viable policy alternative? The Gerontologist, 57(6), 1166–1172. doi:10.1093/geront/gnw166
  • Kathmann, M., Flau, K., Redmer, A., Tränkle, C., & Schlicker, E. (2006). Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 372(5), 354–361. doi:10.1007/s00210-006-0033-x
  • Katoh-Semba, R., Semba, R., Takeuchi, I. K., & Kato, K. (1998). Age-related changes in levels of brain-derived neurotrophic factor in selected brain regions of rats, normal mice and senescence-accelerated mice: A comparison to those of nerve growth factor and neurotrophin-3. Neuroscience Research, 31(3), 227–234. doi:10.1016/S0168-0102(98)00040-6
  • Katona, I., & Freund, T. F. (2012). Multiple functions of endocannabinoid signaling in the brain. Annual Review of Neuroscience, 35(1), 529–558. doi:10.1146/annurev-neuro-062111-150420
  • Keimpema, E., Hökfelt, T., Harkany, T., & Doherty, P. (2014). The molecular interplay between endocannabinoid and neurotrophin signals in the nervous system and beyond. European Journal of Neuroscience, 39(3), 334–343. doi:10.1111/ejn.12431
  • King, G. R., Ernst, T., Deng, W., Stenger, A., Gonzales, R. M., Nakama, H., & Chang, L. (2011). Altered brain activation during visuomotor integration in chronic active cannabis users: Relationship to cortisol levels. Journal of Neuroscience, 31(49), 17923–17931. doi:10.1523/JNEUROSCI.4148-11.2011
  • Kinney, J. W., Bemiller, S. M., Murtishaw, A. S., Leisgang, A. M., & Lamb, B. T. (2018). Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 4, 575–590. doi:10.1016/j.trci.2018.06.014
  • Klein, C., Karanges, E., Spiro, A., Wong, A., Spencer, J., Huynh, T., … McGregor, I. S. (2011). Cannabidiol potentiates Δ 9-tetrahydrocannabinol (THC) behavioural effects and alters thc pharmacokinetics during acute and chronic treatment in adolescent rats. Psychopharmacology, 218(2), 443–457. doi:10.1007/s00213-011-2342-0
  • Kochman, L. J., dos Santos, A. A., Fornal, C. A., & Jacobs, B. L. (2006). Despite strong behavioral disruption, δ9-tetrahydrocannabinol does not affect cell proliferation in the adult mouse dentate gyrus. Brain Research, 1113(1), 86–93. doi:10.1016/j.brainres.2006.07.080
  • Koenders, L., Lorenzetti, V., de Haan, L., Suo, C., Vingerhoets, W. A. M., van den Brink, W., … Cousijn, J. (2017). Longitudinal study of hippocampal volumes in heavy cannabis users. Journal of Psychopharmacology, 31(8), 1027–1034. doi:10.1177/0269881117718380
  • Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., & Jain, A. (2013). The current and projected economic burden of Parkinson's disease in the United States. Movement Disorders, 28(3), 311–318. doi:10.1002/mds.25292
  • Kuhn, H. G., Dickinson-Anson, H., & Gage, F. H. (1996). Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. The Journal of Neuroscience, 16(6), 2027–2033. doi:10.1523/JNEUROSCI.16-06-02027.1996
  • Lang, A. E., & Obeso, J. A. (2004). Challenges in Parkinson's disease: Restoration of the nigrostriatal dopamine system is not enough. The Lancet Neurology, 3(5), 309–316. doi:10.1016/S1474-4422(04)00740-9
  • Lapchak, P. A., Araujo, D. M., Beck, K. D., Finch, C. E., Johnson, S. A., & Hefti, F. (1993). BDNF and TrkB mRNA expression in the hippocampal formation of aging rats. Neurobiology of Aging, 14(2), 121–126. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8487914
  • Lastres-Becker, I., Molina-Holgado, F., Ramos, J. A., Mechoulam, R., & Fernandez-Ruiz, J. (2005). Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson's disease. Neurobiology of Disease, 19(1–2), 96–107. doi:10.1016/j.nbd.2004.11.009
  • Le Merrer, J., Becker, J. A., Befort, K., & Kieffer, B. L. (2009). Reward processing by the opioid system in the brain. Physiological Reviews, 89(4), 1379–1412. doi:10.1152/physrev.00005.2009
  • Lemtiri-Chlieh, F., & Levine, E. S. (2010). BDNF evokes release of endogenous cannabinoids at layer 2/3 inhibitory synapses in the neocortex. Journal of Neurophysiology, 104(4), 1923–1932.
  • Levinson, D. F. (2006). The genetics of depression: A review. Biological Psychiatry, 60(2), 84–92. doi:10.1016/j.biopsych.2005.08.024
  • Liang, Y. C., Huang, C. C., & Hsu, K. S. (2007). The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. Neuropharmacology, 53(1), 169–177. doi:10.1016/j.neuropharm.2007.04.019
  • Lichtman, A. H., Cook, S. A., & Martin, B. R. (1996). Investigation of brain sites mediating cannabinoid-induced antinociception in rats: Evidence supporting periaqueductal gray involvement. Journal of Pharmacology and Experimental Therapeutics, 276(2), 585–593. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8632325
  • Lister, J. P., & Barnes, C. A. (2009). Neurobiological changes in the hippocampus during normative aging. Archives of Neurology, 66(7), 829–833. doi:10.1001/archneurol.2009.125
  • Liu, P., Bilkey, D. K., Darlington, C. L., & Smith, P. F. (2003). Cannabinoid CB1 receptor protein expression in the rat hippocampus and entorhinal, perirhinal, postrhinal and temporal cortices: Regional variations and age-related changes. Brain Research, 979(1–2), 235–239. doi:10.1016/S0006-8993(03)02872-5
  • Lloyd, S. L., & Striley, C. W. (2018). Marijuana use among adults 50 years or older in the 21st century. Gerontology and Geriatric Medicine, 4, 233372141878166. doi:10.1177/2333721418781668
  • Lopez-Moreno, J., Lopez-Jimenez, A., Gorriti, M., & de Fonseca, F. R. (2010). Functional interactions between endogenous cannabinoid and opioid systems: Focus on alcohol, genetics and drug-addicted behaviors. Current Drug Targets, 11(4), 406–428. doi:10.2174/138945010790980312
  • Lorenzetti, V., Solowij, N., & Yucel, M. (2016). The role of cannabinoids in neuroanatomic alterations in cannabis users. Biological Psychiatry, 79(7), e17–e31. doi:10.1016/j.biopsych.2015.11.013
  • Lovinger, D. M., & Mathur, B. N. (2016). Endocannabinoid signaling in the striatum. In H. Steiner & K. Y. Tseng (Eds.), Handbook of basal ganglia structure and function (Vol. 24, 2nd ed., pp. 197–215). Amsterdam: Elsevier.
  • Lu, T., Pan, Y., Kao, S. Y., Li, C., Kohane, I., Chan, J., & Yankner, B. A. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994), 883–891. doi:10.1038/nature02661
  • Luebke, J. I., Chang, Y. M., Moore, T. L., & Rosene, D. L. (2004). Normal aging results in decreased synaptic excitation and increased synaptic inhibition of layer 2/3 pyramidal cells in the monkey prefrontal cortex. Neuroscience, 125(1), 277–288. doi:10.1016/j.neuroscience.2004.01.035
  • Luine, V., Bowling, D., & Hearns, M. (1990). Spatial memory deficits in aged rats: Contributions of monoaminergic systems. Brain Research, 537(1–2), 271–278. doi:10.1016/0006-8993(90)90368-L
  • Luo, Y., Zhou, J., Li, M.-X., Wu, P.-F., Hu, Z.-L., Ni, L., … Wang, F. (2015). Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell, 14(2), 170–179. doi:10.1111/acel.12282
  • Luongo, L., Maione, S., & Di Marzo, V. (2014). Endocannabinoids and neuropathic pain: Focus on neuron-glia and endocannabinoid-neurotrophin interactions. European Journal of Neuroscience, 39(3), 401–408. doi:10.1111/ejn.12440
  • Lupica, C. R., & Riegel, A. C. (2005). Endocannabinoid release from midbrain dopamine neurons: A potential substrate for cannabinoid receptor antagonist treatment of addiction. Neuropharmacology, 48(8), 1105–1116. doi:10.1016/j.neuropharm.2005.03.016
  • Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P. V., … Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1(1), 69–73. doi:10.1038/271
  • Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. doi:10.1038/nrn2639
  • Lupien, S., Lecours, A. R., Schwartz, G., Sharma, S., Hauger, R. L., Meaney, M. J., & Nair, N. P. (1996). Longitudinal study of basal cortisol levels in healthy elderly subjects: Evidence for subgroups. Neurobiology of Aging, 17(1), 95–105. doi:10.1016/0197-4580(95)02005-5
  • Lutz, B., Marsicano, G., Maldonado, R., & Hillard, C. J. (2015). The endocannabinoid system in guarding against fear, anxiety and stress. Nature Reviews Neuroscience, 16(12), 705–718. doi:10.1038/nrn4036
  • Mabry, T. R., Gold, P. E., & McCarty, R. (1995). Age-related changes in plasma catecholamine responses to acute swim stress. Neurobiology of Learning and Memory, 63(3), 260–268. doi:10.1006/nlme.1995.1030
  • Maison, P., Walker, D. J., Walsh, F. S., Williams, G., & Doherty, P. (2009). BDNF regulates neuronal sensitivity to endocannabinoids. Neuroscience Letters, 467(2), 90–94. doi:10.1016/j.neulet.2009.10.011
  • Maldonado, R., & Valverde, O. (2003). Participation of the opioid system in cannabinoid-induced antinociception and emotional-like responses. European Neuropsychopharmacology, 13(6), 401–410. doi:10.1016/j.euroneuro.2003.08.001
  • Maldonado, R., Valverde, O., & Berrendero, F. (2006). Involvement of the endocannabinoid system in drug addiction. Trends in Neurosciences, 29(4), 225–232. doi:10.1016/j.tins.2006.01.008
  • Manganas, L. N., Zhang, X., Li, Y., Hazel, R. D., Smith, S. D., Wagshul, M. E., … Maletic-Savatic, M. (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852), 980–985. doi:10.1126/science.1147851
  • Mansi, J. A., Laforest, S., & Drolet, G. (2002). Effect of stress exposure on the activation pattern of enkephalin-containing perikarya in the rat ventral medulla. Journal of Neurochemistry, 74(6), 2568–2575. doi:10.1046/j.1471-4159.2000.0742568.x
  • Marchalant, Y., Baranger, K., Wenk, G. L., Khrestchatisky, M., & Rivera, S. (2012). Can the benefits of cannabinoid receptor stimulation on neuroinflammation, neurogenesis and memory during normal aging be useful in AD prevention? Journal of Neuroinflammation, 9(1), 10. doi:10.1186/1742-2094-9-10
  • Martini, L., Waldhoer, M., Pusch, M., Kharazia, V., Fong, J., Lee, J. H., … Whistler, J. L. (2007). Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. The FASEB Journal, 21(3), 802–811. doi:10.1096/fj.06-7132com
  • Martin-Moreno, A. M., Brera, B., Spuch, C., Carro, E., Garcia-Garcia, L., Delgado, M., … de Ceballos, M. L. (2012). Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. Journal of Neuroinflammation, 9(1), 1–15. doi:10.1186/1742-2094-9-8
  • Martin-Pena, A., Acebes, A., Rodriguez, J. R., Sorribes, A., de Polavieja, G. G., Fernandez-Funez, P., & Ferrus, A. (2006). Age-independent synaptogenesis by phosphoinositide 3 kinase. Journal of Neuroscience, 26(40), 10199–10208. doi:10.1523/JNEUROSCI.1223-06.2006
  • Mato, S., Chevaleyre, V., Robbe, D., Pazos, A., Castillo, P. E., & Manzoni, O. J. (2004). A single in-vivo exposure to Δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nature Neuroscience, 7(6), 585–586. doi:10.1038/nn1251
  • Matochik, J. A., Eldreth, D. A., Cadet, J. L., & Bolla, K. I. (2005). Altered brain tissue composition in heavy marijuana users. Drug and Alcohol Dependence, 77(1), 23–30. doi:10.1016/j.drugalcdep.2004.06.011
  • Mattson, M. P., & Magnus, T. (2006). Ageing and neuronal vulnerability. Nature Reviews Neuroscience, 7(4), 278–294. doi:10.1038/nrn1886
  • Mayer, T. A., Matar, M. A., Kaplan, Z., Zohar, J., & Cohen, H. (2014). Blunting of the HPA-axis underlies the lack of preventive efficacy of early post-stressor single-dose delta-9-tetrahydrocannabinol (THC). Pharmacology Biochemistry and Behavior, 122, 307–318. doi:10.1016/j.pbb.2014.04.014
  • McDonald, J., Schleifer, L., Richards, J. B., & de Wit, H. (2003). Effects of THC on behavioral measures of impulsivity in humans. Neuropsychopharmacology, 28(7), 1356–1365. doi:10.1038/sj.npp.1300176
  • McLaughlin, R. J., Hill, M. N., & Gorzalka, B. B. (2009). Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. European Journal of Pharmacology, 624(1-3), 71–76. doi:10.1016/j.ejphar.2009.09.055
  • McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682. doi:10.1016/j.neuropsychologia.2008.04.023
  • Mei, Y., Jiang, C., Wan, Y., Lv, J., Jia, J., Wang, X., … Tong, Z. (2015). Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell, 14(4), 659–668. doi:10.1111/acel.12345
  • Melis, M., Pistis, M., Perra, S., Muntoni, A. L., Pillolla, G., & Gessa, G. L. (2004). Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. Journal of Neuroscience, 24(1), 53–62. doi:10.1523/JNEUROSCI.4503-03.2004
  • Meltzer, C. C., Smith, G., DeKosky, S. T., Pollock, B. G., Mathis, C. A., Moore, R. Y., … Reynolds, C. F. 3rd. (1998). Serotonin in aging, late-life depression, and Alzheimer's disease: The emerging role of functional imaging. Neuropsychopharmacology, 18(6), 407–430. doi:10.1016/S0893-133X(97)00194-2
  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. doi:10.1146/annurev.neuro.24.1.167
  • Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., … Sperling, R. A. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of Sciences, 105(6), 2181–2186. doi:10.1073/pnas.0706818105
  • Mishima, K., Egashira, N., Matsumoto, Y., Iwasaki, K., & Fujiwara, M. (2002). Involvement of reduced acetylcholine release in delta9-tetrahydrocannabinol-induced impairment of spatial memory in the 8-arm radial maze. Life Sciences, 72(4-5), 397–407. doi:10.1016/S0024-3205(02)02274-9
  • Mohlman, J., & Gorman, J. M. (2005). The role of executive functioning in CBT: A pilot study with anxious older adults. Behaviour Research and Therapy, 43(4), 447–465. doi:10.1016/j.brat.2004.03.007
  • Morena, M., Patel, S., Bains, J. S., & Hill, M. N. (2016). Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology, 41(1), 80–102. doi:10.1038/npp.2015.166
  • Morgan, C. J., & Curran, H. V. (2008). Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis. The British Journal of Psychiatry, 192(4), 306–307. doi:10.1192/bjp.bp.107.046649
  • Morgan, C. J. A., Page, E., Schaefer, C., Chatten, K., Manocha, A., Gulati, S., … Leweke, F. M. (2013). Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. British Journal of Psychiatry, 202(5), 381–382. doi:10.1192/bjp.bp.112.121178
  • Morgan, C. J., Schafer, G., Freeman, T. P., & Curran, H. V. (2010). Impact of cannabidiol on the acute memory and psychotomimetic effects of smoked cannabis: Naturalistic study: Naturalistic study [Corrected]. British Journal of Psychiatry, 197(4), 285–290. doi:10.1192/bjp.bp.110.077503
  • Morilak, D. A., Barrera, G., Echevarria, D. J., Garcia, A. S., Hernandez, A., Ma, S., & Petre, C. O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 1214–1224. doi:10.1016/j.pnpbp.2005.08.007
  • Mukherjee, J., Christian, B. T., Dunigan, K. A., Shi, B., Narayanan, T. K., Satter, M., & Mantil, J. (2002). Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse, 46(3), 170–188. doi:10.1002/syn.10128
  • Mulder, J., Aguado, T., Keimpema, E., Barabas, K., Ballester Rosado, C. J., Nguyen, L., … Harkany, T. (2008). Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proceedings of the National Academy of Sciences of Sciences, 105(25), 8760–8765. doi:10.1073/pnas.0803545105
  • Muntoni, A. L., Pillolla, G., Melis, M., Perra, S., Gessa, G. L., & Pistis, M. (2006). Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. European Journal of Neuroscience, 23(9), 2385–2394. doi:10.1111/j.1460-9568.2006.04759.x
  • Murchison, C. F., Zhang, X. Y., Zhang, W. P., Ouyang, M., Lee, A., & Thomas, S. A. (2004). A distinct role for norepinephrine in memory retrieval. Cell, 117(1), 131–143. doi:10.1016/S0092-8674(04)00259-4
  • Nagahara, A. H., Gill, T. M., Nicolle, M., & Gallagher, M. (1996). Alterations in opiate receptor binding in the hippocampus of aged long-evans rats. Brain Research, 707(1), 22–30. doi:10.1016/0006-8993(95)01211-7
  • Nandhagopal, R., Kuramoto, L., Schulzer, M., Mak, E., Cragg, J., McKenzie, J., … Stoessl, A. J. (2011). Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson's disease. Brain, 134(11), 3290–3298. doi:10.1093/brain/awr233
  • Nava, F., Carta, G., Battasi, A., & Gessa, G. (2000). D2 dopamine receptors enable Δ9‐tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration. British Journal of Pharmacology, 130(6), 1201–1210. doi:10.1038/sj.bjp.0703413
  • Nava, F., Carta, G., Colombo, G., & Gessa, G. (2001). Effects of chronic Δ9-tetrahydrocannabinol treatment on hippocampal extracellular acetylcholine concentration and alternation performance in the T-Maze. Neuropharmacology, 41(3), 392–399. doi:10.1016/S0028-3908(01)00075-2
  • Navarro, M., Carrera, M. R. A., Fratta, W., Valverde, O., Cossu, G., Fattore, L., … de Fonseca, F. R. (2001). Functional interaction between opioid and cannabinoid receptors in drug self-administration. The Journal of Neuroscience, 21(14), 5344–5350. doi:10.1523/JNEUROSCI.21-14-05344.2001
  • Nielsen, S., Sabioni, P., Trigo, J. M., Ware, M. A., Betz-Stablein, B. D., Murnion, B., … Le Foll, B. (2017). Opioid-sparing effect of cannabinoids: A systematic review and meta-analysis. Neuropsychopharmacology, 42(9), 1752–1765. doi:10.1038/npp.2017.51
  • Norris, C. M., Korol, D. L., & Foster, T. C. (1996). Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging. The Journal of Neuroscience, 16(17), 5382–5392. doi:10.1523/JNEUROSCI.16-17-05382.1996
  • Ohm, T. G., Busch, C., & Bohl, J. (1997). Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiology of Aging, 18(4), 393–399. doi:10.1016/S0197-4580(97)00034-1
  • Olariu, A., Cleaver, K. M., & Cameron, H. A. (2007). Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. The Journal of Comparative Neurology, 501(4), 659–667. doi:10.1002/cne.21268
  • Oropeza, V. C., Page, M. E., & Van Bockstaele, E. J. (2005). Systemic administration of WIN 55,212-2 increases norepinephrine release in the rat frontal cortex. Brain Research, 1046(1-2), 45–54. doi:10.1016/j.brainres.2005.03.036
  • Orr, J. M., Paschall, C. J., & Banich, M. T. (2016). Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry. NeuroImage: Clinical, 12, 47–56. doi:10.1016/j.nicl.2016.06.006
  • Ownby, R. L. (2010). Neuroinflammation and cognitive aging. Current Psychiatry Reports, 12(1), 39–45. doi:10.1007/s11920-009-0082-1
  • Oz, M., Al Kury, L., Keun-Hang, S. Y., Mahgoub, M., & Galadari, S. (2014). Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors. European Journal of Pharmacology, 731, 100–105. doi:10.1016/j.ejphar.2014.03.010
  • Pacek, L. R., Mauro, P. M., & Martins, S. S. (2015). Perceived risk of regular cannabis use in the United States from 2002 to 2012: Differences by sex, age, and race/ethnicity. Drug and Alcohol Dependence, 149, 232–244. doi:10.1016/j.drugalcdep.2015.02.009
  • Page, M. E., Oropeza, V. C., & Van Bockstaele, E. J. (2008). Local administration of a cannabinoid agonist alters norepinephrine efflux in the rat frontal cortex. Neuroscience Letters, 431(1), 1–5. doi:10.1016/j.neulet.2007.11.009
  • Palazuelos, J., Aguado, T., Egia, A., Mechoulam, R., Guzman, M., & Galve-Roperh, I. (2006). Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. The FASEB Journal, 20(13), 2405–2407. doi:10.1096/fj.06-6164fje
  • Palazuelos, J., Ortega, Z., Diaz-Alonso, J., Guzman, M., & Galve-Roperh, I. (2012). CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. Journal of Biological Chemistry, 287(2), 1198–1209. doi:10.1074/jbc.M111.291294
  • Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60(1), 173–196. doi:10.1146/annurev.psych.59.103006.093656
  • Park, H., & Poo, M. M. (2013). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14(1), 7–23. doi:10.1038/nrn3379
  • Paronis, C. A., Nikas, S. P., Shukla, V. G., & Makriyannis, A. (2012). Δ9-Tetrahydrocannabinol acts as a partial agonist/antagonist in mice. Behavioural Pharmacology, 23(8), 802. doi:10.1097/FBP.0b013e32835a7c4d
  • Patel, S., Roelke, C. T., Rademacher, D. J., & Hillard, C. J. (2005). Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. European Journal of Neuroscience, 21(4), 1057–1069. doi:10.1111/j.1460-9568.2005.03916.x
  • Pazos, M. R., Nunez, E., Benito, C., Tolon, R. M., & Romero, J. (2005). Functional neuroanatomy of the endocannabinoid system. Pharmacology Biochemistry and Behavior, 81(2), 239–247. doi:10.1016/j.pbb.2005.01.030
  • Pedersen, W. A., Wan, R., & Mattson, M. P. (2001). Impact of aging on stress-responsive neuroendocrine systems. Mechanisms of Ageing and Development, 122(9), 963–983. doi:10.1016/S0047-6374(01)00250-0
  • Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. G., Ingvar, M., & Buckner, R. L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16(7), 907–915. doi:10.1093/cercor/bhj036
  • Persson, J., Pudas, S., Lind, J., Kauppi, K., Nilsson, L. G., & Nyberg, L. (2012). Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline. Cerebral Cortex, 22(10), 2297–2304. doi:10.1093/cercor/bhr306
  • Pertwee, R. G. (2006). Cannabinoid pharmacology: The first 66 years. British Journal of Pharmacology, 147(S1), S163–S171. doi:10.1038/sj.bjp.0706406
  • Pertwee, R. G. (2006). The pharmacology of cannabinoid receptors and their ligands: An overview. International Journal of Obesity, 30(S1), S13. doi:10.1038/sj.ijo.0803272
  • Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. British Journal of Pharmacology, 153(2), 199–215. doi:10.1038/sj.bjp.0707442
  • Peskind, E. R., Wingerson, D., Murray, S., Pascualy, M., Dobie, D. J., Le Corre, P., … Raskind, M. A. (1995). Effects of Alzheimer's disease and normal aging on cerebrospinal fluid norepinephrine responses to yohimbine and clonidine. Archives of General Psychiatry, 52(9), 774–782. doi:10.1001/archpsyc.1995.03950210068012
  • Peters, A., Sethares, C., & Luebke, J. I. (2008). Synapses are lost during aging in the primate prefrontal cortex. Neuroscience, 152(4), 970–981. doi:10.1016/j.neuroscience.2007.07.014
  • Peters, R. (2006). Ageing and the brain. Postgraduate Medical Journal, 82(964), 84–88. doi:10.1136/pgmj.2005.036665
  • Petkov, V. D., Petkov, V. V., & Stancheva, S. L. (1988). Age-related changes in brain neurotransmission. Gerontology, 34(1-2), 14–21. doi:10.1159/000212925
  • Petralia, R. S., Mattson, M. P., & Yao, P. J. (2014). Communication breakdown: The impact of ageing on synapse structure. Ageing Research Reviews, 14, 31–42. doi:10.1016/j.arr.2014.01.003
  • Phelps, E. A., O'Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4(4), 437–441. doi:10.1038/86110
  • Pickel, V. M., Chan, J., Kash, T. L., Rodriguez, J. J., & MacKie, K. (2004). Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience, 127(1), 101–112. doi:10.1016/j.neuroscience.2004.05.015
  • Pisanu, A., Acquas, E., Fenu, S., & Di Chiara, G. (2006). Modulation of Δ9-THC-induced increase of cortical and hippocampal acetylcholine release by μ opioid and D1 dopamine receptors. Neuropharmacology, 50(6), 661–670. doi:10.1016/j.neuropharm.2005.11.023
  • Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., … Wallace, R. B. (2007). Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology, 29(1-2), 125–132. doi:10.1159/000109998
  • Prenderville, J. A., Kelly, A. M., & Downer, E. J. (2015). The role of cannabinoids in adult neurogenesis. British Journal of Pharmacology, 172(16), 3950–3963. doi:10.1111/bph.13186
  • Przybyslawski, J., Roullet, P., & Sara, S. J. (1999). Attenuation of emotional and nonemotional memories after their reactivation: Role of β adrenergic receptors. The Journal of Neuroscience, 19(15), 6623–6628. doi:10.1523/JNEUROSCI.19-15-06623.1999
  • Pugh, G., Jr., Smith, P. B., Dombrowski, D. S., & Welch, S. P. (1996). The role of endogenous opioids in enhancing the antinociception produced by the combination of delta 9-tetrahydrocannabinol and morphine in the spinal cord. Journal of Pharmacology and Experimental Therapeutics, 279(2), 608–616. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8930163.
  • Ramaekers, J. G., Moeller, M., van Ruitenbeek, P., Theunissen, E. L., Schneider, E., & Kauert, G. (2006). Cognition and motor control as a function of Δ9-THC concentration in serum and oral fluid: Limits of impairment. Drug and Alcohol Dependence, 85(2), 114–122. doi:10.1016/j.drugalcdep.2006.03.015
  • Ramirez, B. G., Blazquez, C., Gomez del Pulgar, T., Guzman, M., & de Ceballos, M. L. (2005). Prevention of Alzheimer's disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. Journal of Neuroscience, 25(8), 1904–1913. doi:10.1523/JNEUROSCI.4540-04.2005
  • Ranganathan, M., Braley, G., Pittman, B., Cooper, T., Perry, E., Krystal, J., & D’Souza, D. C. (2009). The effects of cannabinoids on serum cortisol and prolactin in humans. Psychopharmacology, 203(4), 737–744. doi:10.1007/s00213-008-1422-2
  • Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. R. (2002). The prevalence of frontotemporal dementia. Neurology, 58(11), 1615–1621. doi:10.1212/WNL.58.11.1615
  • Raz, N., Gunning, F. M., Head, D., Dupuis, J. H., McQuain, J., Briggs, S. D., … Acker, J. D. (1997). Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7(3), 268–282. doi:10.1093/cercor/7.3.268
  • Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: A study of a five-year change. Neurology, 62(3), 433–438. doi:10.1212/01.WNL.0000106466.09835.46
  • Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews Neurology, 7(3), 137–152. doi:10.1038/nrneurol.2011.2
  • Reyes, B. A., Szot, P., Sikkema, C., Cathel, A. M., Kirby, L. G., & Van Bockstaele, E. J. (2012). Stress-induced sensitization of cortical adrenergic receptors following a history of cannabinoid exposure. Experimental Neurology, 236(2), 327–335. doi:10.1016/j.expneurol.2012.05.016
  • Ribeiro, S. C., Kennedy, S. E., Smith, Y. R., Stohler, C. S., & Zubieta, J.-K. (2005). Interface of physical and emotional stress regulation through the endogenous opioid system and μ-opioid receptors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 1264–1280. doi:10.1016/j.pnpbp.2005.08.011
  • Rios, C., Gomes, I., & Devi, L. A. (2009). Mu opioid and CB1 cannabinoid receptor interactions: Reciprocal inhibition of receptor signaling and neuritogenesis. British Journal of Pharmacology, 148(4), 387–395. doi:10.1038/sj.bjp.0706757
  • Robbe, D., Alonso, G., Duchamp, F., Bockaert, J., & Manzoni, O. J. (2001). Localization and mechanisms of action of cannabinoid receptors at the glutamatergic synapses of the mouse nucleus accumbens. The Journal of Neuroscience, 21(1), 109–116. doi:10.1523/JNEUROSCI.21-01-00109.2001
  • Robinson, L., Goonawardena, A. V., Pertwee, R., Hampson, R. E., Platt, B., & Riedel, G. (2010). WIN55,212-2 induced deficits in spatial learning are mediated by cholinergic hypofunction. Behavioural Brain Research, 208(2), 584–592. doi:10.1016/j.bbr.2010.01.004
  • Rocchetti, M., Crescini, A., Borgwardt, S., Caverzasi, E., Politi, P., Atakan, Z., & Fusar‐Poli, P. (2013). Is cannabis neurotoxic for the healthy brain? A meta‐analytical review of structural brain alterations in non‐psychotic users. Psychiatry and Clinical Neurosciences, 67(7), 483–492. doi:10.1111/pcn.12085
  • Roman, G. C. (2003). Vascular dementia: Distinguishing characteristics, treatment, and prevention. Journal of the American Geriatrics Society, 51(5 Suppl Dementia), S296–S304. doi:10.1046/j.1532-5415.5155.x
  • Romero, J., Berrendero, F., Garcia-Gil, L., De la Cruz, P., Ramos, J., & Fernandez-Ruiz, J. (1998). Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated [35s] guanylyl-5′-o-(thio)-triphosphate binding in the basal ganglia of aged rats. Neuroscience, 84(4), 1075–1083. doi:10.1016/S0306-4522(97)00552-6
  • Ross, G. W., Petrovitch, H., Abbott, R. D., Nelson, J., Markesbery, W., Davis, D., … White, L. R. (2004). Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Annals of Neurology, 56(4), 532–539. doi:10.1002/ana.20226
  • Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., … Caleo, M. (2006). Brain‐derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. European Journal of Neuroscience, 24(7), 1850–1856. doi:10.1111/j.1460-9568.2006.05059.x
  • Salas-Wright, C. P., Vaughn, M. G., Cummings-Vaughn, L. A., Holzer, K. J., Nelson, E. J., AbiNader, M., & Oh, S. (2017). Trends and correlates of marijuana use among late middle-aged and older adults in the United States, 2002–2014. Drug and Alcohol Dependence, 171, 97–106. doi:10.1016/j.drugalcdep.2016.11.031
  • Salat, D. H., Kaye, J. A., & Janowsky, J. S. (1999). Prefrontal gray and white matter volumes in healthy aging and Alzheimer disease. Archives of Neurology, 56(3), 338–344. doi:10.1001/archneur.56.3.338
  • Salat, D. H., Kaye, J. A., & Janowsky, J. S. (2001). Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Archives of Neurology, 58(9), 1403–1408. doi:10.1001/archneur.58.9.1403
  • Salthouse, T. A. (2009). Decomposing age correlations on neuropsychological and cognitive variables. Journal of the International Neuropsychological Society, 15(5), 650–661. doi:10.1017/S1355617709990385
  • Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10(3), 211–223. doi:10.1038/nrn2573
  • Sarne, Y., Asaf, F., Fishbein, M., Gafni, M., & Keren, O. (2011). The dual neuroprotective-neurotoxic profile of cannabinoid drugs. British Journal of Pharmacology, 163(7), 1391–1401. doi:10.1111/j.1476-5381.2011.01280.x
  • Sarne, Y., Toledano, R., Rachmany, L., Sasson, E., & Doron, R. (2018). Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiology of Aging, 61, 177–186. doi:10.1016/j.neurobiolaging.2017.09.025
  • Saunders, J. B., Aasland, O. G., Babor, T. F., De la Fuente, J. R., & Grant, M. (1993). Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption--II. Addiction, 88(6), 791–804.
  • Scavone, J. L., Mackie, K., & Van Bockstaele, E. J. (2010). Characterization of cannabinoid-1 receptors in the locus coeruleus: Relationship with mu-opioid receptors. Brain Research, 1312, 18–31. doi:10.1016/j.brainres.2009.11.023
  • Scavone, J. L., Sterling, R. C., & Van Bockstaele, E. J. (2013). Cannabinoid and opioid interactions: Implications for opiate dependence and withdrawal. Neuroscience, 248, 637–654. doi:10.1016/j.neuroscience.2013.04.034
  • Schiavon, A. P., Soares, L. M., Bonato, J. M., Milani, H., Guimaraes, F. S., & Weffort de Oliveira, R. M. (2014). Protective effects of cannabidiol against hippocampal cell death and cognitive impairment induced by bilateral common carotid artery occlusion in mice. Neurotoxicity Research, 26(4), 307–316. doi:10.1007/s12640-014-9457-0
  • Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2), 555–563. doi:10.1016/j.bbr.2010.11.058
  • Schoffelmeer, A., Hogenboom, F., Wardeh, G., & De Vries, T. (2006). Interactions between CB1 cannabinoid and μ opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology, 51(4), 773–781. doi:10.1016/j.neuropharm.2006.05.019
  • Schuitemaker, A., van der Doef, T. F., Boellaard, R., van der Flier, W. M., Yaqub, M., Windhorst, A. D., … van Berckel, B. N. M. (2012). Microglial activation in healthy aging. Neurobiology of Aging, 33(6), 1067–1072. doi:10.1016/j.neurobiolaging.2010.09.016
  • Schulze, E. T., Geary, E. K., Susmaras, T. M., Paliga, J. T., Maki, P. M., & Little, D. M. (2011). Anatomical correlates of age-related working memory declines. Journal of Aging Research, 2011, 1. doi:10.4061/2011/606871
  • Schuster, R. M., Crane, N. A., Mermelstein, R., & Gonzalez, R. (2015). Tobacco may mask poorer episodic memory among young adult cannabis users. Neuropsychology, 29(5), 759. doi:10.1037/neu0000173
  • Seelaar, H., Rohrer, J. D., Pijnenburg, Y. A., Fox, N. C., & van Swieten, J. C. (2011). Clinical, genetic and pathological heterogeneity of frontotemporal dementia: A review. Journal of Neurology, Neurosurgery and Psychiatry, 82(5), 476–486. doi:10.1136/jnnp.2010.212225
  • Seeman, P., Bzowej, N. H., Guan, H.-C., Bergeron, C., Becker, L. E., Reynolds, G. P., … Tourtellotte, W. W. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1(5), 399–404. doi:10.1002/syn.890010503
  • Sherman, B. J., & McRae‐Clark, A. L. (2016). Treatment of cannabis use disorder: Current science and future outlook. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(5), 511–535. doi:10.1002/phar.1747
  • Singh, M., Verty, A., McGregor, I., & Mallet, P. (2004). A cannabinoid receptor antagonist attenuates conditioned place preference but not behavioural sensitization to morphine. Brain Research, 1026(2), 244–253. doi:10.1016/j.brainres.2004.08.027
  • Slanina, K. A., Roberto, M., & Schweitzer, P. (2005). Endocannabinoids restrict hippocampal long-term potentiation via CB1. Neuropharmacology, 49(5), 660–668. doi:10.1016/j.neuropharm.2005.04.021
  • Smith, F. L., Cichewicz, D., Martin, Z. L., & Welch, S. P. (1998). The enhancement of morphine antinociception in mice by delta9-tetrahydrocannabinol. Pharmacology Biochemistry and Behavior, 60(2), 559–566. doi:10.1016/S0091-3057(98)00012-4
  • Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 59–63. doi:10.1126/science.273.5271.59
  • Solowij, N., & Battisti, R. (2008). The chronic effects of cannabis on memory in humans: A review. Current Drug Abuse Reviews, 1(1), 81–98.
  • Somaini, L., Manfredini, M., Amore, M., Zaimovic, A., Raggi, M. A., Leonardi, C., … Gerra, G. (2012). Psychobiological responses to unpleasant emotions in cannabis users. European Archives of Psychiatry and Clinical Neuroscience, 262(1), 47–57. doi:10.1007/s00406-011-0223-5
  • Sosa-Ortiz, A. L., Acosta-Castillo, I., & Prince, M. J. (2012). Epidemiology of dementias and Alzheimer's disease. Archives of Medical Research, 43(8), 600–608. doi:10.1016/j.arcmed.2012.11.003
  • Stokes, P. R. A., Egerton, A., Watson, B., Reid, A., Breen, G., Lingford-Hughes, A., … Mehta, M. A. (2010). Significant decreases in frontal and temporal [11c]-raclopride binding after THC challenge. NeuroImage, 52(4), 1521–1527. doi:10.1016/j.neuroimage.2010.04.274
  • Stopponi, S., Soverchia, L., Ubaldi, M., Cippitelli, A., Serpelloni, G., & Ciccocioppo, R. (2014). Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats. European Neuropsychopharmacology, 24(7), 1037–1045. doi:10.1016/j.euroneuro.2013.12.012
  • Subbanna, S., Shivakumar, M., Psychoyos, D., Xie, S., & Basavarajappa, B. S. (2013). Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. Journal of Neuroscience, 33(15), 6350–6366. doi:10.1523/JNEUROSCI.3786-12.2013
  • Subbaraman, M. S., & Kerr, W. C. (2015). Simultaneous versus concurrent use of alcohol and cannabis in the National Alcohol Survey. Alcoholism: Clinical and Experimental Research, 39(5), 872–879. doi:10.1111/acer.12698
  • Substance Abuse and Mental Health Services Administration. (2016). 2015 National survey on drug use and health. Rockville, MD: Substance Abuse and Mental Health Services Administration.
  • Sugarman, D., De Aquino, J., Poling, J., & Sofuoglu, M. (2019). Feasibility and effects of galantamine on cognition in humans with cannabis use disorder. Pharmacology Biochemistry and Behavior, 181, 86.
  • Suliman, N. A., Taib, C. N. M., Moklas, M. A. M., & Basir, R. (2018). Delta-9-tetrahydrocannabinol (Δ9-THC) induce neurogenesis and improve cognitive performances of male Sprague Dawley rats. Neurotoxicity Research, 33(2), 402–411. doi:10.1007/s12640-017-9806-x
  • Suridjan, I., Rusjan, P. M., Voineskos, A. N., Selvanathan, T., Setiawan, E., Strafella, A. P., … Mizrahi, R. (2014). Neuroinflammation in healthy aging: A PET study using a novel translocator protein 18 kDa (TSPO) radioligand, [18F]-FEPPA. NeuroImage, 84, 868–875. doi:10.1016/j.neuroimage.2013.09.021
  • Szenborn, M. (1993). Neuropathological study on the nucleus basalis of meynert in mature and old age. Patologia Polska, 44(4), 211–216. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8309732
  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2013). Brain structures associated with executive functions during everyday events in a non-clinical sample. Brain Structure and Function, 218(4), 1017–1032. doi:10.1007/s00429-012-0444-z
  • Thayer, R. E. (2018). Marijuana use in an aging population: Global brain structure and cognitive function (Doctoral dissertation). University of Colorado at Boulder.
  • Theunissen, E. L., Heckman, P., de Sousa Fernandes Perna, E. B., Kuypers, K. P. C., Sambeth, A., Blokland, A., … Ramaekers, J. G. (2015). Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans. Psychopharmacology, 232(2), 343–353. doi:10.1007/s00213-014-3667-2
  • Tully, K., & Bolshakov, V. Y. (2010). Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Molecular Brain, 3(1), 15. doi:10.1186/1756-6606-3-15
  • Turcotte, C., Blanchet, M.-R., Laviolette, M., & Flamand, N. (2016). The CB2 receptor and its role as a regulator of inflammation. Cellular and Molecular Life Sciences: CMLS, 73(23), 4449–4470. doi:10.1007/s00018-016-2300-4
  • Tzavara, E. T., Wade, M., & Nomikos, G. G. (2003). Biphasic effects of cannabinoids on acetylcholine release in the hippocampus: Site and mechanism of action. The Journal of Neuroscience, 23(28), 9374–9384. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14561865 doi:10.1523/JNEUROSCI.23-28-09374.2003
  • Tzilos, G. K., Cintron, C. B., Wood, J. B., Simpson, N. S., Young, A. D., Pope, H. G., Jr., & Yurgelun-Todd, D. A. (2005). Lack of hippocampal volume change in long-term heavy cannabis users. American Journal on Addictions, 14(1), 64–72. doi:10.1080/10550490590899862
  • Van Laere, K., Goffin, K., Casteels, C., Dupont, P., Mortelmans, L., de Hoon, J., & Bormans, G. (2008). Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [18F] MK-9470 PET. Neuroimage, 39(4), 1533–1541.
  • van Vliet, S. A., Vanwersch, R. A., Jongsma, M. J., Olivier, B., & Philippens, I. H. (2008). Therapeutic effects of delta9-THC and modafinil in a marmoset Parkinson model. European Neuropsychopharmacology, 18(5), 383–389. doi:10.1016/j.euroneuro.2007.11.003
  • Varvel, S. A., Hamm, R. J., Martin, B. R., & Lichtman, A. H. (2001). Differential effects of delta 9-THC on spatial reference and working memory in mice. Psychopharmacology, 157(2), 142–150. doi:10.1007/s002130100780
  • Villares, J. (2007). Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience, 145(1), 323–334. doi:10.1016/j.neuroscience.2006.11.012
  • Volkow, N. D., Baler, R. D., Compton, W. M., & Weiss, S. R. (2014). Adverse health effects of marijuana use. The New England Journal of Medicine, 370(23), 2219–2227. doi:10.1056/NEJMra1402309
  • Volkow, N. D., Fowler, J. S., Wang, G. J., Logan, J., Schlyer, D., MacGregor, R., … Wolf, A. P. (1994). Decreased dopamine transporters with age in healthy human subjects. Annals of Neurology, 36(2), 237–239. doi:10.1002/ana.410360218
  • Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences of Sciences, 108(37), 15037–15042. doi:10.1073/pnas.1010654108
  • Voon, V., Mehta, A. R., & Hallett, M. (2011). Impulse control disorders in Parkinson's disease: Recent advances. Current Opinion in Neurology, 24(4), 324–330. doi:10.1097/WCO.0b013e3283489687
  • Wagner, F. A., & Anthony, J. C. (2002). From first drug use to drug dependence: Developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology, 26(4), 479–488. doi:10.1016/S0893-133X(01)00367-0
  • Wang, D. P., Yin, H., Kang, K., Lin, Q., Su, S. H., & Hai, J. (2018). The potential protective effects of cannabinoid receptor agonist WIN55, 212-2 on cognitive dysfunction is associated with the suppression of autophagy and inflammation in an experimental model of vascular dementia. Psychiatry Research, 267, 281–288. doi:10.1016/j.psychres.2018.06.012
  • Wang, L., Liu, J., Harvey-White, J., Zimmer, A., & Kunos, G. (2003). Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proceedings of the National Academy of Sciences, 100(3), 1393–1398. doi:10.1073/pnas.0336351100
  • Ware, M. A., Wang, T., Shapiro, S., Robinson, A., Ducruet, T., Huynh, T., … Collet, J.-P. (2010). Smoked cannabis for chronic neuropathic pain: A randomized controlled trial. Canadian Medical Association Journal, 182(14), E694–701. doi:10.1503/cmaj.091414
  • Weintraub, D., Koester, J., Potenza, M. N., Siderowf, A. D., Stacy, M., Voon, V., … Lang, A. E. (2010). Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Archives of Neurology, 67(5), 589–595. doi:10.1001/archneurol.2010.65
  • West, M. J. (1993). Regionally specific loss of neurons in the aging human hippocampus. Neurobiology of Aging, 14(4), 287–293. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8367010 doi:10.1016/0197-4580(93)90113-P
  • Wilkins, H., & Swerdlow, R. (2016). Relationships between mitochondria and neuroinflammation: Implications for Alzheimer’s disease. Current Topics in Medicinal Chemistry, 16(8), 849–857.
  • Wilson-Poe, A., Morgan, M., Aicher, S., & Hegarty, D. (2012). Distribution of CB1 cannabinoid receptors and their relationship with mu-opioid receptors in the rat periaqueductal gray. Neuroscience, 213, 191–200. doi:10.1016/j.neuroscience.2012.03.038
  • Wilson-Poe, A., Pocius, E., Herschbach, M., & Morgan, M. (2013). The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids. Pharmacology Biochemistry and Behavior, 103(3), 444–449. doi:10.1016/j.pbb.2012.10.002
  • Winton-Brown, T. T., Allen, P., Bhattacharrya, S., Borgwardt, S. J., Fusar-Poli, P., Crippa, J. A., … McGuire, P. K. (2011). Modulation of auditory and visual processing by delta-9-tetrahydrocannabinol and cannabidiol: An fMRI study. Neuropsychopharmacology, 36(7), 1340–1348. doi:10.1038/npp.2011.17
  • Wise, R. A. (2009). Roles for nigrostriatal—not just mesocorticolimbic—dopamine in reward and addiction. Trends in Neurosciences, 32(10), 517–524. doi:10.1016/j.tins.2009.06.004
  • Wolkowitz, O. M., Epel, E. S., Reus, V. I., & Mellon, S. H. (2010). Depression gets old fast: Do stress and depression accelerate cell aging? Depression and Anxiety, 27(4), 327–338. doi:10.1002/da.20686
  • Wood, P. L. (1983). Opioid regulation of CNS dopaminergic pathways: A review of methodology, receptor types, regional variations and species differences. Peptides, 4(5), 595–601. doi:10.1016/0196-9781(83)90003-7
  • Wu, L.-T., & Blazer, D. G. (2014). Substance use disorders and psychiatric comorbidity in mid and later life: A review. International Journal of Epidemiology, 43(2), 304–317. doi:10.1093/ije/dyt173
  • Yücel, M., Lorenzetti, V., Suo, C., Zalesky, A., Fornito, A., Takagi, M. J., … Solowij, N. (2016). Hippocampal harms, protection and recovery following regular cannabis use. Translational Psychiatry, 6(1), e710. doi:10.1038/tp.2015.201
  • Yücel, M., Solowij, N., Respondek, C., Whittle, S., Fornito, A., Pantelis, C., & Lubman, D. I. (2008). Regional brain abnormalities associated with long-term heavy cannabis use. Archives of General Psychiatry, 65(6), 694–701. doi:10.1001/archpsyc.65.6.694
  • Zalesky, A., Solowij, N., Yücel, M., Lubman, D. I., Takagi, M., Harding, I. H., … Seal, M. (2012). Effect of long-term cannabis use on axonal fibre connectivity. Brain, 135(Pt 7), 2245–2255. doi:10.1093/brain/aws136
  • Zehra, A., Burns, J., Liu, C. K., Manza, P., Wiers, C. E., Volkow, N. D., & Wang, G.-J. (2019). Cannabis addiction and the brain: A review. FOCUS, 17(2), 169–182. doi:10.1176/appi.focus.17204
  • Zhang, H. Y., Chen, W. X., Jiao, Y., Xu, Y., Zhang, X. R., & Wu, J. T. (2014). Selective vulnerability related to aging in large-scale resting brain networks. PLoS ONE, 9(10), e108807. doi:10.1371/journal.pone.0108807
  • Zuardi, A. W., Crippa, J., Hallak, J. E. C., Pinto, J. P., Chagas, M. H. N., Rodrigues, G. G. R., … Tumas, V. (2009). Cannabidiol for the treatment of psychosis in Parkinson's disease. Journal of Psychopharmacology, 23(8), 979–983. doi:10.1177/0269881108096519

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.