457
Views
10
CrossRef citations to date
0
Altmetric
Review

Role of CD56 in Normal Kidney Development and Wilms Tumorigenesis

, &
Pages 62-75 | Received 26 Aug 2016, Accepted 27 Oct 2016, Published online: 09 Dec 2016

References

  • Hirsch M, Gaugler L, Deagostini-Bazin H, et al. Identification of positive and negative regulatory elements governing cell-type-specific expression of the neural cell adhesion molecule gene. Mol Cell Biol 1990;10(5):1959–1968.
  • Gattenloehner S, Stuehmer T, Leich E, et al. Specific detection of CD56 (NCAM) isoforms for the identification of aggressive malignant neoplasms with progressive development. Am J Pathol 2009;174(4):1160–1171.
  • Markovic-Lipkovski J, Mueller CA, Klein G, et al. Neural cell adhesion molecule expression on renal interstitial cells. Nephrol Dial Transplant 2007;22(6):1558–1566.
  • Kren A. The role of NCAM signaling and its effector protein, b1-integrin, in tumor progression [dissertation]. Basel, Switzerland: University of Basel; 2006. Available from: http://edoc.unibas.ch/677/1/DissB_8065.pdf
  • Paratcha G, Ledda F, Ibanez CF. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 2003;113(7):867–879.
  • Schell C, Wannera N, Hubera TB. Glomerular development–Shaping the multi-cellular filtration unit. Semin Cell Dev Biol 2014;36(1):39–49.
  • Aiden AP, Rivera MN, Rheinbay E, et al. Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. Cell Stem Cell 2010;6(6):591–602.
  • Pode-Shakked N, Metsuyanim S, Rom-Gross E, et al. Developmental tumourigenesis: NCAM as a putative marker for the malignant renal stem/progenitor cell population. J Cell Mol Med 2009;13(8B):1792–1808.
  • Pode-Shakked N, Shukrun R, Mark-Danieli M, et al. The isolation and characterization of renal cancer initiating cells from human Wilms' tumourxenografts unveils new therapeutic targets. EMBO Mol Med 2013;5(1):18–37.
  • Knowles DM, ed. Neoplastic Haematopathology. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2001.
  • Santoni MJ, Barthels D, Vopper G, et al. Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO J 1989;8(2):385–392.
  • Walsh FS, Dickson G. Generation of Multiple N-CAM polypeptides from a single gene. Bio Essays 1989;11(4):83–88.
  • Lanier LL, Testi R, Bindl J, Phillips JH. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 1989;169(6):2233–2238.
  • Roth J, Zuber C, Wagner P, et al. Reexpression of poly(sialic acid) units of the neural cell adhesion molecule in Wilms tumor. Proc Natl Acad Sci USA 1988;85(9):2999–3003.
  • Goridis C, Brunet J. NCAM: structural diversity, function and regulation of expression. Semin Cell Biol 1992;3(3):189–197.
  • Becker JW, Erickson HP, Hoffman S, et al. Topology of cell adhesion molecules. Proc Natl Acad Sci USA 1989;86(3):1088–1092.
  • Cavallaro U, Niedermeyer J, Fuxa M, Christofori G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 2001;3(7):650–657.
  • Seidenfaden R, Krauter A, Schertzinger F, et al. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol Cell Biol 2003;23(16):5908–5918.
  • Brady S, Siegel G, Albers RW, Price D, eds. Basic neurochemistry: Principles of molecular, cellular and medical neurobiology. 8th ed. Cambridge, MA: Academic Press; 2011.
  • Kochoyan A, Poulsen FM, Berezin V, et al. Structural basis for the activation of FGFR by NCAM. Protein Sci 2008;17(10):1698–1705.
  • Kiselyov VV, Berezin V, Maar TE, et al. The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in Double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J Biol Chem 1997;272(15):10125–10134.
  • Soroka V, Kolkova K, Kastrup JS, et al. Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 2003;11(10):1291–1301.
  • Ćirović S, Vještica J, Mueller CA, et al. NCAM and FGFR1 coexpression and colocalization in renal tumors. Int J Clin Exp Pathol 2014;7(4):1402–1414.
  • Kos FJ, Chin CS. Costimulation of T cell receptor-triggered IL-2 production by Jurkat T cells via fibroblast growth factor receptor 1 upon its engagement by CD56. Immunol Cell Biol 2002;80(4):364–369.
  • Nybroe O, Moran N, Bock E. Equilibrium binding analysis of neural cell adhesion molecule binding to heparin. J Neurochem 1989;52(6):1947–1949.
  • Fuster MM, Esko JD. The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Rev Cancer 2005;5(7):526–542.
  • Hall AK, Rutishauser U. Visualization of neural cell adhesion molecule by electron microscopy. J Cell Biol 1987;104(6):1579–1586.
  • Zocchi MR, Ferrero E, Toninelli E, et al. Expression of N-CAM by human renal cell carcinomas correlates with growth rate and adhesive properties. Exp Cell Res 1994;214(2):499–509.
  • Reyes AA, Akeson R, Brezina L, Cole GJ. Structural requirements for neural cell adhesion molecule–heparin interaction. Cell Regul 1990;1(8):567–576.
  • Kallapur SG, Akeson RA. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans. J Neurosci Res 1992;33(4):538–548.
  • Berezin V, ed. Structure and function of the neural cell adhesion molecule NCAM. 1st ed. New York: Springer Science & Business Media; 2010.
  • Lehembre F, Yilmaz M, Wicki A, et al. NCAM-induced focal adhesion assembly: A functional switch upon loss of E-cadherin. EMBO J 2008;27(19):2603–2615.
  • Bodrikov V, Leshchyns'ka I, Sytnyk V, et al. RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. J Cell Biol 2005;168(1):127–139.
  • Li J, Dai G, Cheng Y, et al. Polysialylation promotes NCAM-mediated cell migration in an FGFR-dependent manner, but independent of adhesion capability. Glycobiology2011;21(8):1010–1018.
  • Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Am J Physiol Renal Physiol 2011;301(2):F245–F251.
  • Alberts B. Molecular biology of the cell. 5th ed. New York: Garland Science; 2008.
  • Francavilla C, Cattaneo P, Berezin V, et al. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. J Cell Biol 2009;187(7):1101–1116.
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15;15(3):178–196.
  • Beggs HE, Baragona SC, Hemperly JJ, Maness PF. NCAM140 interacts with the focal adhesion kinase p125fak and the SRC-related tyrosine kinase p59fyn. J Biol Chem 1997;272(13):8310–8319.
  • Nielsen J, Gotfryd K, Li S, et al. Role of glial cell line-derived neurotrophic factor (GDNF)—neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF. J Neurosci 2009;29(36):11360–11376.
  • Bard JBL, Gordon A, Sharp L, Sellers WI. Early nephron formation in the developing mouse kidney. J Anat 2001;199(4):385–392.
  • Nouwen EJ, Dauwe S, van der Biest I, et al. Stage-and segment-specific expression of cell-adhesion molecules N-CAM, A-CAM, and L-CAM in the kidney. Kidney Int 1993;44(1):147–158.
  • Metsuyanim S, Harari-Steinberg O, Buzhor E, et al. Expression of stem cell markers in the human fetal kidney. PLoS One 2009;4(8):e6709.
  • Klein G, Langegger M, Goridis C, Ekblom P. Neural cell adhesion molecules during embryonic induction and development of the kidney. Development 1988;102(4):749–761.
  • Crossin KL, Chuong C, Edelman GM. Expression sequences of cell adhesion molecules. Proc Natl Acad Sci USA 1985;82(20):6942–6946.
  • Harari-Steinberg O, Metsuyanim S, Omer D, et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol Med 2013;5(10):1556–1568.
  • Li Y, Wingert RA. Regenerative medicine for the kidney: Stem cell prospects & challenges. Clin Transl Med 2013;2(1):11.
  • Sariola H, Saarma M. GDNF and its receptors in the regulation of the ureteric branching. Int J Dev Biol 1999;43(5):413–418.
  • Zhao Q, Caballero OL, Davis ID, Jonasch E, Tamboli P, Yung WKA, et al. Tumor-specific isoform switch of the fibroblast growth factor receptor 2 underlies the mesenchymal and malignant phenotypes of clear cell renal cell carcinomas. Clin Cancer Res 2013;19(9):2460–2472.
  • Williamson KA, van Heyningen V. Towards an understanding of Wilms' tumour. Int J Exp Pathol 1994;75(3):147–155.
  • Hohenstein P. The stem and roots of Wilms' tumours. EMBO Mol Med 2013;5(1):4–6.
  • Schacker MA. Selection of Wilms' tumour blastemal cells and their maintenance in vitro by Wnt signalling pathway inhibition [dissertation]. London: University College London; 2014.
  • Sehic D, Ciornei CD, Gisselsson D. Evaluation of CITED1, SIX1, and CD56 protein expression for identification of blastemal elements in Wilms tumor. Am J Clin Pathol 2014;141(6):828–833.
  • Shukrun R, Pode-Shakked N, Pleniceanu O, et al. Wilms' tumor blastemal stem cells dedifferentiate to propagate the tumor bulk. Stem Cell Reports 2014;3(1):24–33.
  • Dziedzic K, Pleniceanu O, Dekel B. Kidney stem cells in development, regeneration and cancer. Semin Cell Dev Biol 2014;36:57–65.
  • Pode-Shakked N, Pleniceanu O, Gershon R, et al. Dissecting stages of human kidney development and tumorigenesis with surface markers affords simple prospective purification of nephron stem cells. Sci Rep 2016;6:23562.
  • Edelman GM, Crossin KL. Cell adhesion molecules: Implications for a molecular histology. Annu Rev Biochem 1991;60(1):155–190.
  • Peringa J, Molenaar WM, Timens W. Integrins and extracellular matrix-proteins in the different components of the Wilms' tumour. Virchows Arch 1994;425(2):113–119.
  • Ekblom P, Vestweber D, Kemler R. Cell-matrix interactions and cell adhesion during development. Annu Rev Biochem 1986;2(1):27–47.
  • Ha TC, Spreafico F, Graf N, et al. An international strategy to determine the role of high dose therapy in recurrent Wilms' tumour. Eur J Cancer 2013;49(1):194–210.
  • Wood AC, Maris JM, Gorlick R, et al. Initial testing (Stage 1) of the Antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab Mertansine), by the pediatric preclinical testing program. Paediatr Blood Cancer 2013;60(11):1860–1867.
  • Geller JI, Hohenstein P. Molecular-targeted therapy for pediatric renal tumors. In: Pritchard-Jones K, Dome JS, editors. Renal tumors of childhood: Biology and therapy. 1st ed.: Springer-Verlag: Berlin Heidelberg; 2015. p. 165–184.
  • Children's Oncology Group, National Cancer Institute. Lorvotuzumabmertansine in treating younger patients with relapsed or refractory Wilms tumor, rhadomyosarcoma, neuroblastoma, pleuropulmonaryblastoma, malignant peripheral nerve sheath tumor, or synovial sarcoma. 2015; Report NCT02452554. Available from: https://clinicaltrials.gov/ct2/show/NCT02452554
  • UniProtKB. (7 September 2016) UniProtKB - P13591 (NCAM1_HUMAN). Available from: http://www.uniprot.org/uniprot/P13591[Accessed 1 October 2016].
  • Rivera MN, Haber DA. Wilms' tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 2005;5:699–712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.