108
Views
0
CrossRef citations to date
0
Altmetric
Articles

Immunohistochemical Panels to Evaluate Important Immunophenotypes of Human Mesonephros

&
Pages 1-17 | Received 23 Dec 2021, Accepted 17 Feb 2022, Published online: 15 Mar 2022

References

  • Stevens PE, Levin A, Kidney Disease M, Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30. doi:10.7326/0003-4819-158-11-201306040-00007.
  • Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33(11):1193–200. doi:10.1038/nbt.3392.
  • Oxburgh L, Carroll TJ, Cleaver O, Gossett DR, Hoshizaki DK, Hubbell JA, Humphreys BD, Jain S, Jensen J, Kaplan DL, et al. (Re)Building a kidney. J Am Soc Nephrol. 2017;28(5):1370–8. doi:10.1681/ASN.2016101077.
  • Borestrom C, Jonebring A, Guo J, Palmgren H, Cederblad L, Forslow A, Svensson A, Soderberg M, Reznichenko A, Nystrom J, et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 2018;94(6):1099–110. doi:10.1016/j.kint.2018.05.003.
  • Bonventre JV, Hurst FP, West M, Wu I, Roy-Chaudhury P, Sheldon M. A technology roadmap for innovative approaches to kidney replacement therapies: a catalyst for change. Clin J Am Soc Nephrol. 2019;14(10):1539–47. doi:10.2215/CJN.02570319.
  • Bonventre JV. Kidney organoids-a new tool for kidney therapeutic development. Kidney Int. 2018;94(6):1040–2. doi:10.1016/j.kint.2018.07.029.
  • Little MH, Combes AN. Kidney organoids: accurate models or fortunate accidents. Genes Dev. 2019;33(19–20):1319–45. doi:10.1101/gad.329573.119.
  • Nishinakamura R. Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol. 2019;15(10):613–24. doi:10.1038/s41581-019-0176-x.
  • Lindstrom NO, Guo J, Kim AD, Tran T, Guo Q, Sena Brandine GD, Ransick A, Parvez RK, Thornton ME, Baskin L, et al. Conserved and divergent features of mesenchymal progenitor cell types within the cortical nephrogenic niche of the human and mouse kidney. J Am Soc Nephrol. 2018;29(3):806–24. doi:10.1681/ASN.2017080890.
  • Lindstrom NO, McMahon JA, Guo J, Tran T, Guo Q, Rutledge E, Parvez RK, Saribekyan G, Schuler RE, Liao C, et al. Conserved and divergent features of human and mouse kidney organogenesis. J Am Soc Nephrol. 2018;29(3):785–805. doi:10.1681/ASN.2017080887.
  • Lindstrom NO, Tran T, Guo J, Rutledge E, Parvez RK, Thornton ME, Grubbs B, McMahon JA, McMahon AP. Conserved and divergent molecular and anatomic features of human and mouse nephron patterning. J Am Soc Nephrol. 2018;29(3):825–40. doi:10.1681/ASN.2017091036.
  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14(1):53–67. doi:10.1016/j.stem.2013.11.010.
  • Taguchi A, Nishinakamura R. Nephron reconstitution from pluripotent stem cells. Kidney Int. 2015;87(5):894–900. doi:10.1038/ki.2014.358.
  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526(7574):564–8. doi:10.1038/nature15695.
  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.
  • Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ. Development of the zebrafish mesonephros. Genesis. 2015;53(3–4):257–69. doi:10.1002/dvg.22846.
  • Yin W, Naini SM, Chen G, Hentschel DM, Humphreys BD, Bonventre JV. Mammalian target of rapamycin mediates kidney injury molecule 1-dependent tubule injury in a surrogate model. J Am Soc Nephrol. 2016;27(7):1943–57. doi:10.1681/ASN.2015050500.
  • Ludwig KS, Landmann L. Early development of the human mesonephros. Anat Embryol (Berl)). 2005;209(6):439–47. doi:10.1007/s00429-005-0460-3.
  • Smyth IM, Cullen-McEwen LA, Caruana G, Black JE, Bertram JF. Development of the kidney: morphology and mechanisms. Fetal and Neonatal Phsyiology. 4th ed. Vol. 99. Philadelphia, PA: Elsevier Sanders Publisher, 2011. p. 953–64.
  • Narlis M, Grote D, Gaitan Y, Boualia SK, Bouchard M. Pax2 and pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J Am Soc Nephrol. 2007;18(4):1121–9. doi:10.1681/ASN.2006070739.
  • Poleev A, Fickenscher H, Mundlos S, Winterpacht A, Zabel B, Fidler A, Gruss P, Plachov D. PAX8, a human paired box gene: isolation and expression in developing thyroid, kidney and Wilms’ tumors. Development. 1992;116(3):611–23. doi:10.1242/dev.116.3.611.
  • Grote D, Boualia SK, Souabni A, Merkel C, Chi X, Costantini F, Carroll T, Bouchard M. Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 2008;4(12):e1000316. doi:10.1371/journal.pgen.1000316.
  • Grigorieva IV, Oszwald A, Grigorieva EF, Schachner H, Neudert B, Ostendorf T, Floege J, Lindenmeyer MT, Cohen CD, Panzer U, et al. A novel role for GATA3 in mesangial cells in glomerular development and injury. J Am Soc Nephrol. 2019;30(9):1641–58. doi:10.1681/ASN.2018111143.
  • Szponar A, Beothe T, Kovacs G. How useful is alpha-methylacyl-CoA racemase (AMACR) immunohistochemistry in the differential diagnosis of kidney cancers? Histopathology. 2010;56(2):263–5. doi:10.1111/j.1365-2559.2009.03472.x.
  • O’Rahilly R, Muller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs. 2010;192(2):73–84.
  • O’Rahilly R, M’uller F, Streeter G. Developmental stages in human embryos: including a revision of Streeter’s “horizons” and a survey of the Carnegie Collection. Washington, DC: Carnegie Institution of Washington, 1987.
  • Nogueira R, Sousa S, Braga AC, Azevedo A, Pereira N, Carmo O, Tavares MP, Pinto JC. Measurements in first-trimester abortion products: a pathologic study. Arch Pathol Lab Med. 2020;144(2):207–14. doi:10.5858/arpa.2018-0181-OA.
  • de Jong J, Looijenga LH. Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future. Crit Rev Oncog. 2006;12(3–4):171–203. doi:10.1615/critrevoncog.v12.i3-4.10.
  • Zhang PL, Rothblum LI, Han WK, Blasick TM, Potdar S, Bonventre JV. Kidney injury molecule-1 expression in transplant biopsies is a sensitive measure of cell injury. Kidney Int. 2008;73(5):608–14. doi:10.1038/sj.ki.5002697.
  • Li W, Zhang PL. Up-regulated mTOR pathway indicates active disease in both human native and transplant kidneys. Ann Clin Lab Sci. 2013;43(4):378–88.
  • Yuasa T, Izawa T, Kuwamura M, Yamate J. Thy-1 expressing mesenchymal cells in rat nephrogenesis in correlation with cells immunoreactive for α-smooth muscle actin and vimentin. J Toxicol Pathol. 2010;23(1):1–10. doi:10.1293/tox.23.1.
  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development. Cell. 1993;74(4):679–91. doi:10.1016/0092-8674(93)90515-R.
  • Yin W, Kumar T, Lai Z, Zeng X, Kanaan HD, Li W, Zhang PL. Kidney injury molecule-1, a sensitive and specific marker for identifying acute proximal tubular injury, can be used to predict renal functional recovery in native renal biopsies. Int Urol Nephrol. 2019;51(12):2255–65. doi:10.1007/s11255-019-02311-1.
  • Cimino-Mathews A, Sharma R, Netto GJ. Diagnostic use of PAX8, CAIX, TTF-1, and TGB in metastatic renal cell carcinoma of the thyroid. Am J Surg Pathol. 2011;35(5):757–61. doi:10.1097/PAS.0b013e3182147fa8.
  • Bleu M, Gaulis S, Lopes R, Sprouffske K, Apfel V, Holwerda S, Pregnolato M, Yildiz U, Cordo V, Dost AFM, et al. PAX8 activates metabolic genes via enhancer elements in Renal Cell Carcinoma. Nat Commun. 2019;10(1):3739. doi:10.1038/s41467-019-11672-1.
  • Park S, Zeidan K, Shin JS, Taketo T. SRY upregulation of SOX9 is inefficient and delayed, allowing ovarian differentiation, in the B6.Y(TIR) gonad. Differentiation. 2011;82(1):18–27. doi:10.1016/j.diff.2011.04.007.
  • Lamothe S, Bernard V, Christin-Maitre S. Gonad differentiation toward ovary. Ann Endocrinol (Paris)). 2020;81(2–3):83–8. doi:10.1016/j.ando.2020.04.004.
  • Zhao L, Guo M, Sneige N, Gong Y. Value of PAX8 and WT1 immunostaining in confirming the ovarian origin of metastatic carcinoma in serous effusion specimens. Am J Clin Pathol. 2012;137(2):304–9. doi:10.1309/AJCPU0FION3RKKFO.
  • Salibay C, Fadare O. High-grade endometrioid carcinoma of the endometrium with a GATA-3-positive/PAX8-negative immunophenotype metastatic to the breast: a potential diagnostic pitfall. Int J Surg Pathol. 2020;28(6):631–6. doi:10.1177/1066896920913114.
  • Ichimura T, Asseldonk EJ, Humphreys BD, Gunaratnam L, Duffield JS, Bonventre JV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118(5):1657–68. doi:10.1172/JCI34487.
  • Yang L, Brooks CR, Xiao S, Sabbisetti V, Yeung MY, Hsiao LL, Ichimura T, Kuchroo V, Bonventre JV. KIM-1-mediated phagocytosis reduces acute injury to the kidney. J Clin Invest. 2015;125(4):1620–36. doi:10.1172/JCI75417.
  • Yin W, Zhang PL, Macknis JK, Lin F, Bonventre JV. Kidney injury molecule-1 identifies antemortem injury in postmortem adult and fetal kidney. Am J Physiol Renal Physiol. 2018;315(6):F1637–F1643. doi:10.1152/ajprenal.00060.2018.
  • Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16(1):118–26. doi:10.1038/ncb2894.
  • Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell. 2017;21(6):730–46 e6. doi:10.1016/j.stem.2017.10.011.
  • van den Berg CW, Koudijs A, Ritsma L, Rabelink TJ. In vivo assessment of size-selective glomerular sieving in transplanted human induced pluripotent stem cell-derived kidney organoids. J Am Soc Nephrol. 2020;31(5):921–9. doi:10.1681/ASN.2019060573.
  • Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Reports. 2014;3(4):650–62. doi:10.1016/j.stemcr.2014.08.008.
  • Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996;10(12):1467–78. doi:10.1101/gad.10.12.1467.
  • Little MH, McMahon AP. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a008300. doi:10.1101/cshperspect.a008300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.