101
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Decoding the Possible Molecular Mechanisms in Pediatric Wilms Tumor and Rhabdoid Tumor of the Kidney through Machine Learning Approaches

, , , , , , & show all
Pages 825-844 | Received 15 May 2023, Accepted 26 Jul 2023, Published online: 07 Aug 2023

References

  • Tian F, Yourek G, Shi X, Yang Y. The development of Wilms tumor: from WT1 and microRNA to animal models. Biochim Biophys Acta. 2014;1846(1):180–7. doi:10.1016/j.bbcan.2014.07.003.
  • Scott RH, Murray A, Baskcomb L, Turnbull C, Loveday C, Al-Saadi R, Williams R, Breatnach F, Gerrard M, Hale J, et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget. 2012;3(3):327–35. doi:10.18632/oncotarget.468.
  • Deng C, Dai R, Li X, Liu F. Genetic variation frequencies in Wilms’ tumor: a meta-analysis and systematic review. Cancer Sci. 2016;107(5):690–9. doi:10.1111/cas.12910.
  • Hohenstein P, Hastie ND. LINking microRNAs, kidney development, and Wilms tumors. Genes Dev. 2014;28(9):923–5. doi:10.1101/gad.242735.114.
  • Gadd S, Sredni ST, Huang CC, Perlman EJ. Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets. Lab Invest. 2010;90(5):724–38. doi:10.1038/labinvest.2010.66.
  • Tomlinson GE, Breslow NE, Dome J, Guthrie KA, Norkool P, Li S, Thomas PRM, Perlman E, Beckwith JB, D'Angio GJ, et al. Rhabdoid tumor of the kidney in the National Wilms’ Tumor Study: age at diagnosis as a prognostic factor. J Clin Oncol. 2005;23(30):7641–5. doi:10.1200/jco.2004.00.8110.
  • Chen H, Lu S, Guan J, Zhu X, Sun F, Huang J, Zhu J, Wang J, Zhen Z, Que Y, et al. Identification of prognostic immune-related genes in rhabdoid tumor of kidney based on TARGET database analysis. Aging (Albany NY)). 2021;13(4):5461–74. doi:10.18632/aging.202475.
  • Ooms A, Vujanić GM, D'Hooghe E, Collini P, L'Herminé-Coulomb A, Vokuhl C, et al. Renal tumors of childhood-a histopathologic pattern-based diagnostic approach. Cancers (Basel). 2020;12(3):729. doi:10.3390/cancers12030729.
  • Institute N-NC. The Cancer Genome Atlas (TCGA). 2021. https://portal.gdc.cancer.gov.
  • Ferreira AJ, Figueiredo MA. Efficient feature selection filters for high-dimensional data. Pattern Recog Lett. 2012;33(13):1794–804. doi:10.1016/j.patrec.2012.05.019.
  • Bommert A, Sun X, Bischl B, Rahnenführer J, Lang M. Benchmark for filter methods for feature selection in high-dimensional classification data. Comput Stat Data Anal. 2020;143:106839. doi:10.1016/j.csda.2019.106839.
  • Bakhshandeh S, Azmi R, Teshnehlab M. Symmetric uncertainty class-feature association map for feature selection in microarray dataset. Int J Mach Learn Cyber. 2020;11(1):15–32. doi:10.1007/s13042-019-00932-7.
  • Hosseiniyan Khatibi SM, Ardalan M, Teshnehlab M, Vahed SZ, Pirmoradi S. Panels of mRNAs and miRNAs for decoding molecular mechanisms of Renal Cell Carcinoma (RCC) subtypes utilizing Artificial Intelligence approaches. Sci Rep. 2022;12(1):16393. doi:10.1038/s41598-022-20783-7.
  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech. 2008; 2008(10):P10008. doi:10.1088/1742-5468/2008/10/P10008.
  • Boppana R, Halldórsson MM. Approximating maximum independent sets by excluding subgraphs. BIT Numer Math. 1992;32(2):180–96. doi:10.1007/BF01994876.
  • Aghayousefi R, Hosseiniyan Khatibi SM, Zununi Vahed S, Bastami M, Pirmoradi S, Teshnehlab M. A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches. J Cancer Res Clin Oncol. 2023;149(1):325–41. doi:10.1007/s00432-022-04468-2.
  • Pirmoradi S, Teshnehlab M, Zarghami N, Sharifi A. A self-organizing deep auto-encoder approach for classification of complex diseases using SNP genomics data. Appl Soft Comput. 2020; 97:106718. doi:10.1016/j.asoc.2020.106718.
  • Hosseiniyan Khatibi SM, Najjarian F, Homaei Rad H, Ardalan M, Teshnehlab M, Zununi Vahed S, Pirmoradi S. Key therapeutic targets implicated at the early stage of hepatocellular carcinoma identified through machine-learning approaches. Sci Rep. 2023;13(1):3840. doi:10.1038/s41598-023-30720-x.
  • Agrawal R, Srikant R, editors. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference Very Large Data Bases, VLDB. Citeseer; 1994.
  • Wach S, Nolte E, Theil A, Stöhr C, T Rau T, Hartmann A, Ekici A, Keck B, Taubert H, Wullich B, et al. MicroRNA profiles classify papillary renal cell carcinoma subtypes. Br J Cancer. 2013;109(3):714–22. doi:10.1038/bjc.2013.313.
  • Youssef YM, White NMA, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, Evans A, Yousef GM. Accurate molecular classification of kidney cancer subtypes using MicroRNA signature. Eur Urol. 2011;59(5):721–30. doi:10.1016/j.eururo.2011.01.004.
  • Muhamed Ali A, Zhuang H, Ibrahim A, Rehman O, Huang M, Wu A. A machine learning approach for the classification of kidney cancer subtypes using miRNA genome data. Appl Sci. 2018;8(12):2422. doi:10.3390/app8122422.
  • Pirmoradi S, Teshnehlab M, Zarghami N, Sharifi A. A self-organizing deep neuro-fuzzy system approach for classification of kidney cancer subtypes using miRNA genomics data. Comput Methods Programs Biomed. 2021;206:106132. doi:10.1016/j.cmpb.2021.106132.
  • Shukrun R, Pode-Shakked N, Pleniceanu O, Omer D, Vax E, Peer E, Pri-Chen S, Jacob J, Hu Q, Harari-Steinberg O, et al. Wilms’ tumor blastemal stem cells dedifferentiate to ­propagate the tumor bulk. Stem Cell Rep. 2014;3(1):24–33. doi:10.1016/j.stemcr.2014.05.013.
  • Grundy P, Coppes M. An overview of the clinical and molecular genetics of Wilms’ tumor. Med Pediatr Oncol. 1996;27(5):394–7. doi:10.1002/(sici)1096-911x(199611)27:5 < 394::Aid-mpo1 > 3.0.Co;2-h.
  • Bharathavikru R, Dudnakova T, Aitken S, Slight J, Artibani M, Hohenstein P, Tollervey D, Hastie N. Transcription factor Wilms’ tumor 1 regulates developmental RNAs through 3’ UTR interaction. Genes Dev. 2017;31(4):347–52. doi:10.1101/gad.291500.116.
  • Delgado AP, Brandao P, Chapado MJ, Hamid S, Narayanan R. Open reading frames associated with cancer in the dark matter of the human genome. Cancer Genomics Proteomics. 2014;11(4):201–13.
  • Wang X-R, Zhou Y-B, Liu F, Wang K-S, Shen Y, Liu J-H, Han Z-G. A novel recently evolved gene C19orf24 encodes a non-classical secreted protein. Cell Mol Biol Lett. 2006;11(2):161–70. doi:10.2478/s11658-006-0014-6.
  • Zhang Y, Yu S, Xie R, Li J, Leier A, Marquez-Lago TT, Akutsu T, Smith AI, Ge Z, Wang J, et al. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins. Bioinformatics. 2020;36(3):704–12. doi:10.1093/bioinformatics/btz629.
  • Lu W, Fu D, Kong X, Huang Z, Hwang M, Zhu Y, Chen L, Jiang K, Li X, Wu Y, et al. FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms. Cancer Med. 2020;9(4):1419–29. doi:10.1002/cam4.2786.
  • Gadd S, Huff V, Huang C-C, Ruteshouser EC, Dome JS, Grundy PE, Breslow N, Jennings L, Green DM, Beckwith JB, et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children’s Oncology Group Study. Neoplasia. 2012;14(8):742–56. doi:10.1593/neo.12714.
  • McDonald JM, Douglass EC, Fisher R, Geiser CF, Krill CE, Strong LC, et al. Linkage of familial Wilms’ tumor predisposition to chromosome 19 and a two-locus model for the etiology of familial tumors. Cancer Res. 1998;58(7):1387–90.
  • Lichti CF, Liu H, Shavkunov AS, Mostovenko E, Sulman EP, Ezhilarasan R, Wang Q, Kroes RA, Moskal JC, Fenyö D, et al. Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines. J Proteome Res. 2014;13(1):191–9. doi:10.1021/pr400786s.
  • Huang M, Chen Y, Han D, Lei Z, Chu X. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am J Cancer Res. 2019;9(5):816–36.
  • Wang X-X, Xiao F-H, Li Q-G, Liu J, He Y-H, Kong Q-P. Large-scale DNA methylation expression analysis across 12 solid cancers reveals hypermethylation in the calcium-signaling pathway. Oncotarget. 2017;8(7):11868–76. doi:10.18632/oncotarget.14417.
  • Zhong X, Zhong G. Prognostic biomarker identification and tumor classification in breast cancer patients by methylation and transcriptome analysis. FEBS Open Bio. 2021;11(8):2139–51. doi:10.1002/2211-5463.13211.
  • Sapkota S, Horiguchi K, Tosaka M, Yamada S, Yamada M. Whole-exome sequencing study of thyrotropin-secreting pituitary adenomas. J Clin Endocrinol Metab. 2017;102(2):566–75. doi:10.1210/jc.2016-2261.
  • Wen Y, Zhou X, Lu M, He M, Tian Y, Liu L, Wang M, Tan W, Deng Y, Yang X, et al. Bclaf1 promotes angiogenesis by regulating HIF-1alpha transcription in hepatocellular carcinoma. Oncogene. 2019;38(11):1845–59. doi:10.1038/s41388-018-0552-1.
  • Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288(46):33292–302. doi:10.1074/jbc.M113.500397.
  • Tang J, Wang F, Cheng G, Si S, Sun X, Han J, Yu H, Zhang W, Lv Q, Wei J-F, et al. Wilms’ tumor 1-associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability. J Exp Clin Cancer Res. 2018;37(1):40. doi:10.1186/s13046-018-0706-6.
  • Xie W, Wei L, Guo J, Guo H, Song X, Sheng X. Physiological functions of Wilms’ tumor 1-associating protein and its role in tumourigenesis. J Cell Biochem. 2019;120(7):10884–92. doi:10.1002/jcb.28402.
  • Shao A, Lang Y, Wang M, Qin C, Kuang Y, Mei Y, Lin D, Zhang S, Tang J. Bclaf1 is a direct target of HIF-1 and critically regulates the stability of HIF-1alpha under hypoxia. Oncogene. 2020;39(13):2807–18. doi:10.1038/s41388-020-1185-8.
  • Kitamura E, Cowell JK, Chang CS, Hawthorn L. Variant profiles of genes mapping to chromosome 16q loss in Wilms tumors reveals link to cilia-related genes and pathways. Genes Cancer. 2020;11(3–4):137–53. doi:10.18632/genesandcancer.207.
  • Fliedner A, Kirchner P, Wiesener A, van de Beek I, Waisfisz Q, van Haelst M, Scott DA, Lalani SR, Rosenfeld JA, Azamian MS, et al. Variants in SCAF4 cause a neurodevelopmental disorder and are associated with impaired mRNA processing. Am J Hum Genet. 2020;107(3):544–54. doi:10.1016/j.ajhg.2020.06.019.
  • Becker R, Loll B, Meinhart A. Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II. J Biol Chem. 2008;283(33):22659–69. doi:10.1074/jbc.M803540200.
  • Gregersen LH, Mitter R, Ugalde AP, Nojima T, Proudfoot NJ, Agami R, Stewart A, Svejstrup JQ. SCAF4 and SCAF8, mRNA anti-terminator proteins. Cell. 2019;177(7):1797–813 e18. doi:10.1016/j.cell.2019.04.038.
  • Gadd S, Huff V, Walz AL, Ooms AHAG, Armstrong AE, Gerhard DS, Smith MA, Auvil JMG, Meerzaman D, Chen Q-R, et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet. 2017;49(10):1487–94. doi:10.1038/ng.3940.
  • Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred DC, Muthuswamy SK. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res. 2008;68(20):8201–9. doi:10.1158/0008-5472.Can-07-6567.
  • Yin X, Wang P, Yang T, Li G, Teng X, Huang W, Yu H. Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis. Aging (Albany NY)). 2020;13(2):2519–38. doi:10.18632/aging.202285.
  • Cunliffe HE, Jiang Y, Fornace KM, Yang F, Meltzer PS. PAR6B is required for tight junction formation and activated PKCζ localization in breast cancer. Am J Cancer Res. 2012;2(5):478–91.
  • Zhou Q, Dai J, Chen T, Dada LA, Zhang X, Zhang W, DeCamp MM, Winn RA, Sznajder JI, Zhou G, et al. Downregulation of PKCζ/Pard3/Pard6b is responsible for lung adenocarcinoma cell EMT and invasion. Cell Signal. 2017;38:49–59. doi:10.1016/j.cellsig.2017.06.016.
  • Li C-F, Liu T-T, Chuang I-C, Chen Y-Y, Fang F-M, Chan T-C, Li W-S, Huang H-Y. PLCB4 copy gain and PLCß4 overexpression in primary gastrointestinal stromal tumors: integrative characterization of a lipid-catabolizing enzyme associated with worse disease-free survival. Oncotarget. 2017;8(12):19997–20010. doi:10.18632/oncotarget.15306.
  • Wu S, Zhang W, Shen D, Lu J, Zhao L. PLCB4 upregulation is associated with unfavorable prognosis in pediatric acute myeloid leukemia. Oncol Lett. 2019;18(6):6057–65. doi:10.3892/ol.2019.10921.
  • Li K, Wang C, Xiong X, Ma H, Qi Y, Hu W, Xiao S, Zhou X, Pang L, Zou H. Small-cell variant renal oncocytoma: case report on its clinicopathological and genetic characteristics and literature review. Gene. 2020;730:144266. doi:10.1016/j.gene.2019.144266.
  • Hong K, Hu L, Liu X, Simon JM, Ptacek TS, Zheng X, Liao C, Baldwin AS, Zhang Q. USP37 promotes deubiquitination of HIF2α in kidney cancer. Proc Natl Acad Sci U S A. 2020;117(23):13023–32. doi:10.1073/pnas.2002567117.
  • Cai J, Li M, Wang X, Li L, Li Q, Hou Z, Jia H, Liu S. USP37 promotes lung cancer cell migration by stabilizing snail protein via deubiquitination. Front Genet. 2019;10:1324. doi:10.3389/fgene.2019.01324.
  • Pan J, Deng Q, Jiang C, Wang X, Niu T, Li H, Chen T, Jin J, Pan W, Cai X, et al. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene. 2015;34(30):3957–67. doi:10.1038/onc.2014.327.
  • Wu L, Zhao N, Zhou Z, Chen J, Han S, Zhang X, Bao H, Yuan W, Shu X. PLAGL2 promotes the proliferation and migration of gastric cancer cells via USP37-mediated deubiquitination of Snail1. Theranostics. 2021;11(2):700–14. doi:10.7150/thno.47800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.