311
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Highly Dispersed Zinc Oxide Nanoparticles Through Ultrasonication Assisted by Hydrothermal Treatment: A Novel Approach

&
Pages 1121-1131 | Received 26 Aug 2013, Accepted 02 Nov 2013, Published online: 26 Mar 2015

References

  • Vayssiers, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.
  • Joseph, Y.; Ranke, W.; Weiss, W. Water on FeO(111) and Fe3O4(111): Adsorption behavior on different surface terminations. J. Phys. Chem. B 2000, 104, 3224–3236.
  • Reitz, J. B.; Soloman, E. I. Propylene oxidation on copper oxide surfaces:  electronic and geometric contributions to reactivity and selectivity. J. Am. Chem. Soc. 1998, 120, 11467–11478.
  • Jiang, L. H.; Sun, G. Q.; Zhou, Z. H.; Zhou, W. J.; Xin, Q. Preparation and characterization of Ptsn/C anode electrocatalysts for direct ethanol fuel cell. Catal. Today 2004, 93, 665–670.
  • Woo, K.; Lee, H. J.; Ahn, J.; Park, Y. S. Sol–Gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 2003, 15, 1761–1764.
  • Nakaoka, K.; Ueyama, J.; Ogura, K. Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J. Eletroanal. Chem. 2004, 571, 93–99.
  • Look, D. C. Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 2001, 80, 383–387.
  • Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R. Controlled growth of zinc oxide nanowires and their optical properties. Adv. Funct. Mater. 2002, 12, 323–331.
  • Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.
  • Shiono, T.; Yamamoto, H.; Nishino, S. Microexplosion recording in spin-coated polymer films including ZnO nanoparticles for three-dimensional optical memory. Jap. J. Appl. Phys. 2004, 43, 4941–4944.
  • Sato, T.; Tanigaki, T.; Suzuki, H.; Saito, Y.; Kido, O.; Kimura, Y. Structure and optical spectrum of ZnO nanoparticles produced in RF plasma. J. Cryst. Growth 2003, 255, 313–316.
  • Hochepied, J. F.; Almeida De Oliveira, A. P. Controlled precipitation of zinc oxide particles. Prog. Colloid Polym. Sci. 2004, 125, 68–73.
  • Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Recent progress in processing and properties of ZnO. Superlatt. Microstruct. 2005, 50, 3–32.
  • Gudkova, A. V.; Kienskaya, K. I.; Nazarov, V. V.; Kim, V.; Mukhtarova, S. E. Synthesis and use of highly dispersed zinc oxide. Russ. J. Appl. Chem. 2005, 78, 1757–1760.
  • Lu, C. H.; Yeh, C. H. Emulsion precipitation of submicron zinc oxide powder. Mater. Lett. 1997, 33, 129–132.
  • Chen, Y. F.; Bagnall, D. M.; Koh, H. J.; Park, K. T.; Hiraga, K.; Zhu, Z. Q.; Yao, T. Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization. J. Appl. Phys. 1998, 84, 3912–3918.
  • Zhao, X.; Zheng, B.; Li, C.; Gu, H. Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis. Powder Technol. 1998, 100, 20–23.
  • Takahashi, N.; Kaiya, K.; Omichi, K.; Nakamura, T.; Okamoto, S.; Yamamoto, H. J. Atmospheric pressure vapor-phase growth of ZnO using a chloride source. Cryst. Growth Des. 2000, 209, 822–827.
  • Wu, J. J.; Liu, S. C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 2002, 14, 215–218.
  • Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 2003, 15, 1911–1914.
  • Viswanathan, R.; Gupta, R. B. Formation of zinc oxide nanoparticles in supercritical water. J. Supercrit. Fluids 2003, 27, 187–193.
  • Ni, Y. H.; Wei, X. W.; Hong, J. M.; Ye, Y. Hydrothermal preparation and optical properties of ZnO nanorods. Mater. Sci. Eng. B, Solid State Mater. 2005, 121, 42–47.
  • Ristic, M.; Music, S.; Ivanda, M.; Popovic, S. Sol–gel synthesis and characterization of nanocrystalline ZnO powders. J. Alloys Compd. 2005, 397, L1–L4.
  • Hirai, T.; Asada, Y. Preparation of ZnO nanoparticles in a reverse micellar system and their photoluminescence properties. J. Colloid Interface Sci. 2005, 284, 184–189.
  • Berber, M.; Bulto, V.; Kliss, R.; Hahn, H. Transparent nanocrystalline ZnO films prepared by spin coating. Scripta Mater. 2005, 53, 547–551.
  • Scarisoreanu, N.; Matei, D. G.; Dinescu, G.; Epurescu, G.; Ghica, C.; Nistor, L. C.; Dinescu, M. Properties of ZnO thin films prepared by radio-frequency plasma beam assisted laser ablation. Appl. Surf. Sci. 2005, 247, 518–525.
  • Wang, C.; Shen, E.; Wang, E.; Gao, L.; Kang, Z.; Tian, C. Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature. Mater. Lett. 2005, 59, 2867–2871.
  • Wu, C.; Qiao, X.; Chen, J.; Wang, H.; Tan, F.; Li, S. A novel chemical route to prepare ZnO nanoparticles. Mater Lett. 2006, 60, 1828–1832.
  • Demir, M. M.; Munoz–Espi, R.; Lieberwirth, I.; Wagner, G. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. J. Mater Chem. 2006, 16, 2940–2947.
  • Baskoutas, S.; Giabouranis, P.; Yannopoulos, S. N.; Dracopoulos, V.; Toth, L.; Chrissanthopoulos, A. Preparation of ZnO nanoparticles by thermal decomposition of zinc alginate. Thin Solid Films 2007, 515, 8461–8464.
  • Senna, M.; Nakayama, S. Preparation and properties of nano-amorphous organic and inorganic particles via chemical and mechanochemical routes. J. Alloys Compd. 2009, 483, 265–270.
  • Bhatte, K. D.; Futija, S. I.; Arai, M.; Pandit, A. B.; Bhanage, B. M. Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide. Ultrason. Sonochem. 2011, 18, 54–58.
  • Zang, J. F.; Li, C. M.; Cui, X. Q.; Wang, J. X.; Sun, X. W.; Dong, H.; Sun, C. Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanal. 2007, 19, 1008–1014.
  • Laudise, R. A.; Ballman, A. A. Hydrothermal synthesis of zinc oxide and zinc sulfide. J. Phys. Chem. 1960, 64, 688–691.
  • Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 1999, 203, 186–196.
  • Demianets, L. N.; Kostomarov, D. V.; Kuzmina, I. P.; Pushko, S. V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 2002, 47, S86–S98.
  • Demianets, L. N.; Kostomarov, D. V. Mechanism of zinc oxide single crystal growth under hydrothermal conditions. Ann. Chim. Sci. Mater. 2001, 26, 193–198.
  • Demyanets, L. N.; Kostomarov, D. V.; Kuz-mina, I. P. Chemistry and kinetics of ZnO growth from alkaline hydrothermal solutions. Inorg. Mater. 2002, 38, 124–131.
  • Kawska, A.; Duchstein, P.; Hochrein, O.; Zahn, D. Atomistic mechanisms of ZnO aggregation from ethanolic solution: Ion association, proton transfer, and self-organization. Nano Lett. 2008, 8, 2336–2340.
  • Zhang, J.; Sun, L. D.; Yin, J. L.; Su, H. L.; Liao, C. S.; Yan, C. H. Control of ZnO morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177.
  • Cheng, B.; Samulski, E. T. Hydrothermal synthesis of one dimensional ZnO nanostructures with different aspect ratios. Chem. Commun. 2004, 986–987.
  • Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.
  • Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K. Shape- and size-controlled synthesis of nanometer ZnO from a simple solution route at room temperature. Nanotechnology 2006, 17, 3632–3636.
  • Hou, X. M.; Zhou, F.; Sun, Y. B.; Liu, W. M. Ultrasound assisted synthesis of dentritic ZnO nanostructure in ionic liquid. Mater. Lett. 2007, 61, 1789–1792.
  • Alammar, T.; Mudring, A. V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater. Lett. 2009, 63, 732–735.
  • Boyle, D. S.; Govender, K.; O’Brien, P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: Substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 2002, 80–81.
  • Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.
  • Ahuja, I. S.; Yadava, C. L.; Singh, R. Structural information on manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium (II) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra. J. Mol. Struct. 1982, 81, 229–234.
  • Baruah, S.; Dutta, J. Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 2009, 10, 0130001.
  • Govender, K.; Boyle, D. S.; Kenway, P. B.; O’Brien, P. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 2004, 14, 2575–2591.
  • Unalan, H. E.; Hiralal, P.; Rupesinghe, N.; Dalal, S.; Milne, W. I.; Amaratunga, G. A. J. Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 2008, 19, 255608.
  • Jung, S. H.; Oh, E.; Lee, K. H.; Park, W.; Jeong, S. H. A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater. 2007, 19, 749–753.
  • Shi, L.; Bao, K. Y.; Cao, J.; Qian, Y. T. Sunlight-assisted fabrication of a hierarchical ZnO nanorod array structure. CrystEngComm 2009, 11, 2009–2014.
  • Ismail, A. A.; El-Midany, A.; Abdel-Aal, E. A.; El-Shall, H. Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Mater. Lett. 2005, 59, 1924–1928.
  • Kandjani, A. E.; Tabriz, M. F.; Pourabbas, B. Sonochemical synthesis of ZnO nanoparticles: The effect of temperature and sonication power. Mater. Res. Bull. 2008, 43, 645–654.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.