206
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Catalytic Activity for Oxygen Reduction of Dual Catalysts System Based on Tetranitro-Metal Phthalocyanine and Nano-Manganese Dioxide

, &
Pages 1813-1818 | Received 21 Oct 2013, Accepted 10 Nov 2013, Published online: 29 Jul 2015

References

  • Danaee, I.; Jafarian, M.; Forouzandeh, F.; Gobal, F.; Mahjani, M. G. Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode. Int. J. Hydrogen Energy 2008, 33, 4367–4376.
  • Jafarian, M.; Mahjani, M. G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M. H. A study of the electrocatalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode. Electrochim. Acta. 2003, 48, 3423–3429.
  • Abdel Hameed, R. M.; EI-Khatib, K. M. NieP and NieCueP modified carbon catalysts for methanol electro-oxidation in KOH solution. Int. J. Hydrogen Energy 2010, 35, 2517–2529.
  • Müller, K.; Richter, M.; Friedrich, D.; Paloumpa, I.; Kramm, U. I.; Schmeißer, D. Spectroscopic characterization of cobalt–phthalocyanine electrocatalysts for fuel cell applications. Solid State Ionics 2012, 216, 78–82.
  • Xu, Z. W.; Li, H. J.; Cao, G. X.; Zhang, Q. L.; Li, K. Z.; Zhao, X. N. Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction. J. Mol. Catal. A: Chem. 2011, 335, 89–96.
  • Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-organization of hydrogen-bonded optically active phthalocyanine dimers. Langmuir. 2003, 19, 4825–4830.
  • Nishiyama, N.; Iriyama, A.; Jang, W. D.; Miyata, K.; Itaka, K.; Inoue, Y.; Takahashi, H.; Yanagi, Y.; Tamaki, Y.; Koyama, H.; Kataoka, K. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 2005, 4, 934–940.
  • Sorokin, A.; Séris, J. L.; Meunier, B. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine. Science 1995, 268, 1163–1166.
  • Stanley Whittingham, M. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.
  • Brock, S. L.; Duan, N.; Tian, Z. R.; Giraldo, O.; Zhou, H.; Suib, S. L. A review of porous manganese oxide materials. Chem. Mater. 1998, 10, 2619–2628.
  • Chen, J.; Jin, J. C.; Purohit, V.; Cutlip, M. B.; Suib, S. L. Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides. Catal. Today 1997, 33, 205–214.
  • Nthapo, S.; Tebello, N. Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J. Electroanal. Chem. 2006, 595, 161–167.
  • Verma, A.; Jha, A. K.; Basu, S. Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte. J. Power Sources 2005, 141, 30–34.
  • Sun, J. H.; Liu, J. H.; Huang, C. Z.; Zhang, L. X.; Li, W. S. Microbial fuel cell using manganese dioxide as cathodic oxygen reducing catalyst. Chin. J. Power Sources 2008, 32, 838–841.
  • Ohsaka, T.; Mao, L. Q.; Arihara, K.; Sotomur, T. Bifunctional catalytic activity of manganese oxide toward O2 reduction: novel insight into the mechanism of alkaline air electrode. Electrochem. Commun. 2004, 6, 273–277.
  • Zhang, D.; Chi, D.; Okajima, T.; Ohsaka, T. Catalytic activity of dual catalysts system based on nano-manganese oxide and cobalt octacyanoph-thalocyanine toward four-electron reduction of oxygen in alkaline media. Electrochim. Acta. 2007, 52, 5400–5406.
  • Mao, L. Q.; Arihara, K.; Sotomur, T.; Ohsaka, T. A novel alkaline air electrode based on a combined use of cobalt hexadecafluorophthalocyanine and manganese oxide. Electrochim. Acta. 2004, 49, 2515–2521.
  • Chen, F. Y.; Li, K. Z.; Li, H. J. Electrochemical performance of dual catalysts system based on nickel phthalocyanine and nano-manganese dioxide for O2 reduction. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2013, 43, 556–561.
  • Yin, Y. B.; Hao, X. R.; Li, Y. Y.; Zhao, B. Z.; Fu, Q. Synthesis and study on spectral properties of the 2,9,16,23-tetranitrophalocyanine cobalt(II). J. Northeast Normal Univ. (Nat. Sci. Ed.) 2004, 36, 67–70.
  • Duan, Y. P.; Ma, H.; Zhang, J.; Li, X. G.; Liu, S. H. Electromagnetic characteristics and multiple dielectric relaxations of β-manganese dioxide nanorods. Chin. J. Inorg. Chem. 2009, 25, 1635–1641.
  • Zhang, M. Y.; Shao, C. L.; Guo, Z. C.; Zhang, Z. Y.; Mu, J. B.; Zhang, P.; Cao, T. P. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow sphere. ACS Appl. Mater. Interfaces 2011, 3, 2573–2578.
  • Xu, Z. W.; Zhang, G. X.; Cao, Z. Y.; Zhao, J. S.; Li, H. J. Effect of N atoms in the backbone of metal phthalocyanine derivatives on their catalytic activity to lithium battery. J. Mol. Catal. A 2010, 318, 101–105.
  • Li, F.; Chen, W.; Zhang, S. S. Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies. Biosens. Bioelectron. 2008, 24, 781–786.
  • Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications; Wiley, New York, 1980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.