183
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Oxygen, Tellurium, and Zinc Substitution on CdSe Nanoribbon: A First-Principles Investigation

, &
Pages 1780-1787 | Received 18 Sep 2013, Accepted 24 Nov 2013, Published online: 29 Jul 2015

References

  • Kois, J.; Bereznev, S.; Gurevits, J.; Volobujeva, O. Electrochemically synthesised CdSe nanofibers and pearl-chain nanostructures for photovoltaic applications. Mater. Lett. 2013, 95, 110–113.
  • Deshpande, M. P.; Nitya Garg, S.; Bhatt, V.; Sakariya, P.; Chaki, S. H. Characterization of CdSe thin films deposited by chemical bath solutions containing triethanolamine. Mater. Sci. Semicond. Process. 2013, 16, 915–922.
  • Gopakumar, N.; Anjana, P. S.; Vidyadharan Pillai, P. K. Chemical bath deposition and characterization of CdSe thin films for optoelectronic applications. J. Mater. Sci. 2010, 45, 6653–6656.
  • Al-Ani, S. K. J.; Mohammed, H. H.; Al-Fwade, E. M. N. The optoelectronic properties of CdSe:Cu photoconductive detector. Renewable Energy 2002, 25, 585–590.
  • Lee, M. J.; Judge, C. P.; Wright, S. W. Properties of CdSe thin film transistors prepared By photolithography. Solid-State Electron. 1980, 23, 1087–1088.
  • Virendra Kumar, V.; Yashvendra Singh, Y.; Chauhan, R. N.; Anand, R. S.; Kumar, J. Characterization of CdSe nanocrystals for hybrid solar cells. Integr. Ferroelect. 2010, 120, 1–5.
  • Roth, M. Advantages and limitations of cadmium selenide room temperature gamma ray detectors. Nucl. Instrum. Methods Phys. Res. 1989, 283A, 291–298.
  • Park, Y. M.; Andre, R.; Kasprzak, J.; Dang, L. S.; Bellet-Amalric, E. Molecular beam epitaxy of CdSe epilayers and quantum wells on ZnTe substrate. Appl. Surf. Sci. 2007, 253, 6946–6950.
  • Pathinettam Padiyan, D; Marikani, A.; Murali, K. R. Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films. Mater. Chem. Phys. 2002, 78, 51–58.
  • Heine, J. R.; Rodriguez-Viejo, J.; Bawendi, M. G.; Jensen, K. F. Synthesis of CdSe quantum dot–ZnS matrix thin films via electrospray organometallic chemical vapor deposition. J. Cryst. Growth 1998, 195, 564–568.
  • Murali, K. R.; Elango, P.; Gopalakrishnan, P. Structural and optical properties of CdSe films brush plated on low temperature substrates. Mater. Chem. Phys. 2006, 96, 103–106.
  • Meteleva, Y. V.; Radychev, N. A.; Novikov, G. F. Properties of CdSe films produced via spray pyrolysis of [Cd((NH2)2 CSe)2 Cl2]. Inorg. Mater. 2007, 43, 455–465.
  • Pandey, R. K.; Kumar, S. R.; Rooz, A. J. N.; Chandra, S. Composition, surface morphology and structure ofn-CdSe films prepared by repeated cycles of electrodeposition. J. Mater. Sci. 1991, 26, 3617–3622.
  • Celik, D.; Krueger, M.; Veit, C.; Schleiermacher, H. F.; Zimmermann, B.; Allard, S.; Dumsch, I.; Scherf, U.; Rauscher, F.; Niyamakom, P. Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Sol. Energy Mater. Sol. Cells 2012, 98, 433–440.
  • Wang, H.; Guo, Z.; Du, F. Solvothermal synthesis of CdSe nanorods via DEA solution. Mater. Chem. Phys. 2006, 98, 422–424.
  • Niculescu, E. C.; Cristea, M. Impurity states and photoionization cross section in CdSe/ZnS core–shell nanodots with dielectric confinement. J. Luminesc. 2013, 135, 120–127.
  • Zhao, L.; Pang, Q.; Yang, S.; Ge, W.; Wang, J. Photoluminescence of colloidal CdSe nano-tetrapods and quantum dots in oxygenic and oxygen-free environments. Appl. Phys. 2011, 103A, 279–284.
  • Li, Y.-L. First-principles study on the stability and the electronic structure of low-index CdTe/CdSe interfaces. Solid State Commun. 2013, 155, 73–78.
  • Thienprasert, J. T.; Limpijumnong, S.; Du, M. H.; Singh, D. J. First principles study of O defects in CdSe. Physica 2012, 407B, 2841–2845.
  • Sriram, S.; Chandiramouli, R.; Jeyaprakash, B. G. Influence of fluorine substitution on the properties of CdO nanocluster: a DFT approach. Struct. Chem. 2014, 25, 389–401.
  • Sriram, S.; Chandiramouli, R. DFT studies on the stability of linear, ring, and 3D structures in CdTe nanoclusters. Res. Chem. Intermed. 2015, 41, 2095–2124.
  • Chandiramouli, R.; Sriram, S.; Balamurugan, D. Quantum chemical studies on (ZnO)n/(NiO)n heterostructured nanoclusters. Mol. Phys. 2014, 112, 151–164.
  • Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779.
  • Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev.1992, 46B, 6671–6687.
  • Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. 1996, 54B, 16533–16539.
  • Zhao, J. F.; Yang, C. L.; Wang, M. S.; Ma, J. First-principles analysis of the effect of contact sites on electronic transport properties of diaminofluorene. Physica 2013, 417B, 70–74.
  • Zhang, G.-L.; Yuan, H.-L.; Zhang, H.; Shang, Y.; Sun, M. Theoretical studies on the transport property of oligosilane with p-n junction. Int. J. Quantum Chem. 2011, 111, 4214–4223.
  • Jaiswal, N. K.; Srivastava, P. First principles calculations of cobalt doped zigzag graphene nanoribbons. Solid State Commun. 2012, 152, 1489–1492.
  • Srivastava, A.; Tyagi, N.; Singh, R. K. Structural and electronic properties of lead nanowires: Ab-initio study. Mater. Chem. Phys. 2011, 127, 489–494.
  • Srivastava, A.; Tyagi, N. Structural and electronic properties of AlX (X ¼ P, As, Sb) nanowires: Ab initio study. Mater. Chem. Phys. 2012, 137, 103–112.
  • Kuloglu, A. F.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Ozbay, E. First-principles calculations of Pd-terminated symmetrical armchair grapheme nanoribbons. Comput. Mater. Sci. 2013, 68, 18–22.
  • Qi, Y.; Guan, D.; Liu, C. DFT study of the conductance of molecular wire: The effect of coupling geometry and intermolecular interaction on the transport properties. Sci. China Ser. 2006, 49B, 492–498.
  • Qi, Y.-H.; Guan, D.-R.; Liu, C.-B. DFT Study of the Transport Properties of Molecular Wire at Low Bias. Chin. J. Chem. 2006, 24, 326–330.
  • Zhang, Z. H.; Guo, C.; Kwong, G.; Deng, X. Q. Electronic transport of nitrogen-capped monoatomic carbon wires between lithium electrodes. Carbon 2013, 51, 313–321.
  • Yang, C.; Chen, Q. Electronic structure and transport properties of carbon nanotube adsorbed with a copper chain. Int. J. Smart Nano Mater. 2013, 4, 143–149.
  • Xia, C.-J.; Liu, D.-S.; Fang, C.-F.; Zhao, P. The I–V characteristics of the butadienimine-based optical molecular switch: An ab initio study. Physica 2010, 42E, 1763–1768.
  • Hiroyuki, F.; Yoshikazu, K.; Kazuyoshi, T. Theoretical study of current-voltage characteristics of carbon nanotube wire functionalized with hydrogen atoms. Sci. China Chem. 2012, 55, 796–801.
  • Fang, C.; Cui, B.; Xu, Y.; Ji, G.; Liu, D.; Xie, S. Electronic transport properties of carbon chains between Au and Ag electrodes: A first-principles study. Phys. Lett. 2011, 375A, 3618–3623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.