358
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Characterization of a New Difunctional Ligand and Its Metal Complexes: An Experimental, Theoretical, Cyclic Voltammetric, and Antimicrobial Study

, , , , , & show all
Pages 1795-1807 | Received 04 Oct 2013, Accepted 24 Nov 2013, Published online: 29 Jul 2015

References

  • Singh, A. K.; Pandey, O. P.; Sengupta, S. K. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases. Spectrochim. Acta Part A 2012, 85, 1–6.
  • Shebl, M.; Khalil, S. M. E.; Ahmed, S. A.; Medien, H. A. A. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand. J. Mol. Struct. 2010, 980, 39–50.
  • Gudasi, K. B.; Patil, S. A.; Vadari, R. S.; Shenoy, R. B.; Patil, M. S. Transition Met. Chem. 2007, 32, 558.
  • Khedr, A. M.; Gaber, M.; Diab, H. A.; characterization, molecular modeling, and thermal analyses of bioactive Co(II) and Cu(II) complexes with diacetylmonoxime and different amines. J. Coord. Chem. 2010, 65, 1672–1684.
  • Holla, B. S.; Veerendra, B.; Shivanda, M. K.; Poojari, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem. 2003, 38, 759–767.
  • Kapalcikli, Z. A.; Zitoungi, G. T.; Ozdemir, A.; Revial, G. Synthesis and antituberculosis activity of new thiazolylhydrazone derivatives. Eur. J. Med. Chem. 2008, 43, 981–985.
  • Chandra, S.; Gupta, L. K. Synthesis spectroscopic and biological approach in the characterization of novel [N-4] macrocyclic ligand and its transition metal complexes. Transition Met. Chem. 2007, 32, 558–563.
  • Fenton, P. R.; Gauci, R.; Junk, P. C.; Lindoy, L. F.; Luckay, R. C.; Meehan, G. V.; Price, J. R.; Tumer, P.; Wei, G.; Macrocyclic ligand design. Structure-function relationships involving the interaction of pyridinyl-containing, mixed oxygen-nitrogen donor macrocycles with cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), silver(I) and lead(II). J. Chem. Soc., Dalton Trans. 2002, 2185–2193.
  • Tarek, M. A. I.; Saleh, A. A.; El Ghamry, M. A. Tetra- and hexadentate Schiff base ligands and their Ni(II), Cu(II) and Zn(II) complexes. Synthesis, spectral, magnetic and thermal studies. Spectrochim. Acta Part A 2012, 86, 276–288.
  • Shen, W. Z.; Kang, F.; Sun, Y. J.; Cheng, P.; Yan, S. P.; Liao, D. Z.; Jiang, Z. H. The synthesis and crystal structure of [M{H2B(tz*)2}2(H2O)] (M=Cu, Zn and tz*=3,5-dimethyl-1,2,4-triazole). Inorg. Chem. Commun. 2003, 6, 408–411.
  • Gianolio, D. A.; Lanfranchi, M.; Lusardi, F.; Marchio, L.; Pellinghelli, M. A. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 4-amino-1,2,4-triazolidine-3,5-dione (urazine). Inorg. Chim. Acta 2000, 309, 91–102.
  • Todoulou, O. G.; Papadaki-Valiraki, A.; Filippatos, E. C.; Ikeda, S.; De Clercq, E. Synthesis and anti-myxovirus activity of some novel N,N'-disubstituted thioureas. Eur. J. Med. Chem. 1994, 29, 127–131.
  • Singh, K.; Barwa, M. S.; Tyagi, P. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. Eur. J. Med. Chem. 2007, 42, 394–402.
  • Palmer, M. H.; Christen, D. An ab initio study of the structure, tautomerism and molecular properties of the C- and N-amino-1,2,4-triazoles. J. Mol. Struct. 2004, 705, 177–187.
  • Yanardag, R.; Demirci, T. B.; Ulkuseven, B.; Bolkent, S.; Tunali, S.; Bolkent, S. Synthesis, characterization and antidiabetic properties of N1–2,4-dihydroxybenzylidene-N4–2 hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium(IV). Eur. J. Med. Chem. 2009, 44, 818–826.
  • Bhattacharjee, C. R.; Goswami, P.; Mondal, P. Synthesis, reactivity, thermal, electrochemical and magnetic studies on iron(III) complexes of tetradentate Schiff base ligands. Inorg. Chim. Acta 2012, 387, 86–92.
  • Yousef, T. A.; Abu El-Rash, G. M.; El-Gammal, O. A.; Bedier, R. A. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: Synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies. J. Mol. Struct.. 2012, 1029, 149–160.
  • Adly, O. M. I. Synthesis, molecular modeling, thermal and spectral studies of metal complexes of hydrazone derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and thiosemicarbazide. Spectrochim. Acta Part A 2011, 79, 1295–1303. Chen, L.; Qiao, J.; Xie, J.; Duan, L.; Zhang, D. Substituted azomethine-zinc complexes: Thermal stability, photophysical, electrochemical and electron transport properties. Inorg. Chim. Acta 2009, 362, 2327–2333.
  • Yang, X.; Wang, Q.; Huang, Y.; Fu Zhang, P. J.; Zeng, R. Synthesis, DNA interaction and antimicrobial activities of copper (II) complexes with Schiff base ligands derived from kaempferol and polyamines. Inorg. Chem. Commun. 2012, 25, 55–59.
  • Ilhan, S. Preparation and characterization of binuclear Cu-II complexes derived from diamines and dialdehydes. J. Coord. Chem. 2008, 61, 3634–2895.
  • Temel, H.; Ilhan, S. Synthesis and spectroscopic studies of novel transition metal complexes with schiff base synthesized from 1,4-bis-(o-aminophenoxy)butane and salicyldehyde. Russ. J. Coord. Chem. 2009, 54, 543–547.
  • Zoubi, W. A. L.; Kandil, F.; Chebani, M. K. The synthesis of (N2O2S2)-Schiff base ligands and investigation of their ion extraction capability from aqueous media Spectrochim. Acta Part A 2011, 79, 1909–1914.
  • Türkoğlu, G.; Berber, H.; Dal, H.; Öğretir, C. Synthesis and characterization, tautomerism and theoretical study of some new Schiff base derivaties. Spectrochim. Acta Part A 2011, 79, 1573–1583.
  • Earnshaw, A. Introduction to Magnetochemistry; Academic Press, London, 1968.
  • Foresman, J. B.; Frisch, A. E. Exploring Chemistry With Electronic Structure Methods; Gaussian Inc., Pittsburgh, PA 1996.
  • Frisch, A. E.; Hratchian, H. P.; Dennington, R. D. II; Keith, T. A.; Millam, J. GaussView 5 Reference; Gaussian, Inc. Wallingford, CT, 2009.
  • Blois, M. S. Nature 1958, 181, 1199.
  • Dinis, T. C. P.; Madeira, V. M. C.; Almeida, L. M. Tamoxifen and hydroxytamoxifen as intramembraneous inhibitors of lipid peroxidation. Evidence for peroxyl radical scavenging activity. Biochem. Pharmacol. 1994, 47, 1989–1998.
  • Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813.
  • İlhan, S.; Temel, H.; Kilic, A. Synthesis and characterization of new macrocyclic Cu(II) complexes from various diamines, copper(II) nitrate and 1,4-bis(2-formylfenoxy)butane. Chin. J. Chem. 2007, 10, 1547–1550.
  • Gupta, S. K.; Anjara, C.; Sen, N.; Butcher, R. J.; Jasinski, J. P. Synthesis, crystal structure, DFT and spectroscopic studies of mononuclear chromium(III) complex with bidentate ligand. Polyhedron 2012, 43, 8–14.
  • Ilhan, S.; Temel, H.; Yilmaz, I.; Sekerci, M. Synthesis, structural characterization and electrochemical studies of new macrocyclic Schiff base containing pyridine head and its metal complexes. J. Organomet. Chem. 2007, 692, 3855–3865.
  • Ilhan, S.; Temel, H.; Yilmaz, I.; Sekerci, M. Synthesis and characterization of new macrocyclic Schiff base derived from 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes. Polyhedron 2007, 26, 2795–2802.
  • Ilhan, S.; Temel, H. Synthesis and characterization of a new macrocyclic Schiff base derived from 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes. Transition Met. Chem. 2007, 32, 1039–1046.
  • İlhan, S.; Temel, H.; Kilic, A.; Yılmaz, İ. Synthesis, characterization and redox property of macrocyclic Schiff base by reaction of 2,6-diaminopyridine and 1,3-bis(2-carboxyaldehyde phenoxy)propane and its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes. Transition Met. Chem. 2007, 32, 344–349.
  • Saleh, A. A. J. Coord. Chem. 2005, 58, 255.
  • Temel, H.; Ilhan, S.; Aslanoglu, M.; Kilic, A.; Tas, E. Synthesis, spectroscopic and electrochemical studies of novel transition metal complexes with quadridentate Schiff base. J. Chin. Chem. Soc. 2006, 53, 1027–1031.
  • Temel, H.; Alp, H.; Ilhan, S.; Ziyadanoğulları, B.; Yilmaz, İ. Spectroscopic and electrochemical studies of transition metal complexes with N,N′-bis(2-aminothiophenol)-1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and structure effects on extractability of ligand towards some divalent cations. Monatsh. Chem. 2007, 138, 1199–1209.
  • Lodeiro, C.; Batida, R.; Bertolo, E.; Macias, A.; Rodriguez, A. Metal complexes with four macrocyclic ligands derived from 2,6-bis(2-formylphenoxymethyl)pyridine and 1,7-bis(2′-formylphenyl)1,4,7-trioxaheptane. Inorg. Chim. Acta 2003, 343, 133–140.
  • Youssef, N. S.; El-Zahany, E. A.; Barsoum, B. N.; El-Seidy, A. M. A. Synthesis and characterization of copper(II), cobalt(II), nickel(II), and iron(III) complexes with two diamine Schiff bases and catalytic reactivity of a chiral diamine cobalt(II) complex. Transition Met. Chem. 2009, 34, 905–914.
  • Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press, Oxford, England, 1989.
  • Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136.
  • Schlegel, H. B.; McDouall, J. J. In: Computational Advances in Organic Chemistry C. Ögretir, I.; Csizmadia, G., editors. Kluwer Academic, Dordrecht, the Netherlands, 1991; pp. 167–185.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01; Gaussian, Inc., Wallingford, CT, 2010.
  • Roothaan, C. C. J. New developments in molecular orbital theory. Mol. Rev. Mod. Phys. 1951, 23, 69–89.
  • London, F. Quantum theory of interatomic currents in aromatic compounds. J. Phys. Rad. 1937, 8, 397–409.
  • McWeeny, R. Physical perturbation theory for the Fock-Dirac density matrix. Phys. Rev. 1962, 126, 1028–1034.
  • Ditchfield, R. Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO (linear combination of atomic orbitals) method for NMR chemical shifts. Phys. 1974, 27, 789–807.
  • Wolinski, K.; Hilton, J. F.; Pulay, P. Efficient implementation of the gauge-ındependent atomic orbital method for NMR chemical-shift calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260.
  • Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 1996, 104, 5497–509.
  • Nagabalasubramaniana, P. B.; Karabacak, M.; Periandy, S. FT-IR, FT-Raman, ab initio and DFT structural, vibrational frequency and HOMO–LUMO analysis of 1-naphthaleneacetic acid methyl ester. Spectrochim. Acta Part A 2011, 82, 169–180.
  • Choudhary, N.; Bee, S.; Gupta, A.; Tandon, P. Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of N-(phenyl)-2,2-dichloroacetamide, N-(2-chloro phenyl)-2,2-dichloroacetamide and N-(4-chloro phenyl)-2,2-dichloroacetamide based on density functional theory. Comput. Theor. Chem. 2013, 1016, 8–21.
  • Singla, N.; Chowdhury, P. Density functional investigation of photo induced Intramolecular Proton Transfer (IPT) in Indole-7-carboxaldehyde and its experimental verification. J. Mol. Struct. 2013, 1045, 72–80.
  • Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime. Spectrochim. Acta Part A 2012, 96, 207–220.
  • Cakmak, I. GIAO calculations of chemical shifts in enantiometrically pure 1-trifluoromethyl tetrahydroisoquinoline alkaloids. J. Mol. Struct. Theochem. 2005, 716, 143–148.
  • Yuksek, H.; Cakmak, I.; Sadi, S.; Alkan, M.; Baykara, H. Synthesis and GIAO NMR calculations for some novel 4-heteroarylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives: Comparison of theoretical and experimental H-1- and C-13-chemical shifts. Int. J. Mol. Sci. 2005, 6, 219–229.
  • Yuksek, H.; Alkan, M.; Bahceci, S.; Cakmak, I.; Ocak, Z.; Baykara, H.; Aktas, O.; Agyel, E. Synthesis, determination of pKa values and GIAO NMR calculations of some new 3-alkyl-4-(p-methoxybenzoylamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones. J. Mol. Struct. 2008, 873, 142–148.
  • Hwang, S. W.; Chen, Y. Photoluminescent and electrochemical properties of novel poly(aryl ether)s with isolated hole-transporting carbazole and electron-transporting 1,3,4-oxadiazole fluorophores. Macromolecules 2002, 35, 5438–5443.
  • Ueda, J.; Saito, N.; Shimazu, Y.; Ozawa, T. A Comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch. Biochem. Biophys. 1996, 333, 377–384.
  • Liu, Y-C.; Yang, Z-Y. Crystal structures, antioxidation and DNA binding properties of Eu(III) complexes with Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxyaldehyde and three aroylhydrazines. Inorg. J. Biochem. 2009, 103, 1014–1022.
  • Ağırtaş, M. S.; Çelebi, M.; Gümüş, S.; Ozdemir, S.; Okumus, V. New water soluble phenoxy phenyl diazenyl benzoic acid substituted phthalocyanine derivatives: Synthesis, antioxidant activities, atypical aggregation behavior and electronic properties. Dyes Pigments 2013, 99, 423–431.
  • Agirtas, M. S.; Gumus, I.; Okumus, V.; Dundar, A. Design of novel binuclear phthalocyanines formed by dioxyphenyl bridges: synthesis and ınvestigation of thermal and antioxidant properties. ZAAC 2012, 638, 1868–1872.
  • Ziyad, A. T.; Abdulaziz, M. A.; Momanib, A. W.; Al-Ghzawia, A. A. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochim. Acta Part A 2011, 81, 570–577.
  • Bukhari, S. B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M. I. Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim. Acta Part A 2009, 71, 1901–1906.
  • Hsiao, G.; Teng, C. M.; Wu, C. L.; Ko, F. N. Marchantin H as a natural antioxidant and free radical scavenger. Arch. Biochem. Biophys. 1996, 334, 18–26.
  • Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agr. Food Chem. 1992, 40, 945–948.
  • Arif, M.; Qurashi, M. M. R.; Shad, M. A. Metal-based antibacterial agents: synthesis, characterization, and in vitro biological evaluation of cefixime-derived Schiff bases and their complexes with Zn(II), Cu(II), Ni(II), and Co(II). J. Coord. Chem. 2011, 64, 1914–1930.
  • Yang, Y.; Guan, J.; Qiu, P. Synthesis, characterization and catalytic properties of heterogeneous iron(III) tetradentate Schiff base complexes for the aerobic epoxidation of styrene. Transition Met. Chem. 2010, 35, 263–270.
  • Al-Karawi, A. J. M. Synthesis and characterization of a new N2S2 Schiff base ligand and its complexes with nickel(II), copper(II) and cadmium(II) including the kinetics of complex formation. Transition Met. Chem. 2009, 34, 891–897.
  • Böttcher, C.; Schmidt, H.; Rehder, D. Methylcyclopentadienyl-vanadium(III) complexes. J. Organomet. Chem. 1999, 580, 72–76.
  • Nair, M. S.; Arish, D.; Joseyphus, R. S. Synthesis, characterization, antifungal, antibacterial and DNA cleavage studies of some heterocyclic Schiff base metal complexes. J. Saudi Chem. 2012, 16, 83–88.
  • Miyoshi, K.; Wang, J.; Mizuta, T. An X-ray crystallographic study on the molecular structures of seven-coordinate (ethylenediamine-N,N,N′-triacetato-N′-acetic acid) (aqua)-titanium(III) and -vanadium(III), [TiIII(H-edta)(H2O)].H2O and [VIII(Hedta)(H2O)].H2O. Inorg. Chim. Acta 1995, 228, 165–172.
  • Keypour, H.; Jamshidi, A. H.; Rezaeivala, M.; Valencia, L. Synthesis and characterization of mononuclear and dimeric Ni(II), Cu(II) and Cd(II) Schiff base complexes with two new asymmetrical tripodal amines. Crystal structures of Ni(II) and Cd(II) complexes and their antibacterial studies. Polyhedron 2013, 52, 872–878.
  • Ilhan, S.; Baykara, H.; Oztomsuk, A.; Okumus, V.; Levent, A.; Seyitoglu, M. S.; Ozdemir, S. Synthesis and Characterization of 1,2-bis(2-(5-bromo-2-hydroxybenzilidenamino)-4-chlorophenoxy)ethane ant its metal complexes:An experimental, theoretical, electrochemical, antioxidant and antibacterial study. Spectrochim. Acta 2014, 118, 632–642.
  • Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P. T.; Tryniszewska, E. A. The effect of PAMAM dendrimers on the antibacterial activity of antibiotics with different water solubility. Molecules 2013, 18, 8607–8617.
  • Ejiah, F. N.; Fasina, T. M.; Familoni, O. B.; Ogunsola, F. T. Substituent effect on spectral and antimicrobial activity of Schiff bases derived from aminobenzoic acids. Adv. Biol. Chem. 2013, 3, 475–479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.