196
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

DNA Binding Properties of Water-Soluble Mixed Ligand Nickel(II) Complex with Calf-thymus DNA Using Different Instrumental Methods

, , , &
Pages 1882-1888 | Received 19 Sep 2013, Accepted 25 Feb 2014, Published online: 29 Jul 2015

References

  • Becco, L.; Rodríguez, A.; Bravo, M. E.; Prieto, M. J.; Ruiz-Azuara, L.; Garat, B.; Moreno, V.; Gambino, D. New achievements on biological aspects of copper complexes Casiopeínas: Interaction with DNA and proteins and anti-Trypanosoma cruzi activity. J. Inorg. Biochem. 2012, 109, 49–56.
  • Ramesh, G. N.; Subba Rao, Y.; Prathima, B.; Sravani, V.; Varada Reddy, A.Synthesis, characterization and biological activities of manganese(II) complex: Molecular modeling of DNA interactions. Der Pharm. Lett. 2012, 4, 1299–1307.
  • Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.; Turro, N. J.; Barton, J. K. Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 1989, 111, 3051–3058.
  • Li, C.; Liu, S.; Guo, L.-H.; Chen, D. A new chemically amplified electrochemical system for DNA detection in solution. Electrochem. Commun. 2005, 7, 23–28.
  • Pyle, A. M.; Barton, J. K. Probing Nucleic Acids With Transition Metal Complexes; Wiley, London, 1990.
  • Liu, F.; Meadows, K. A.; McMillin, D. R. DNA-binding studies of Cu(bcp)2+ and Cu(dmp)2+: DNA elongation without intercalation of Cu(bcp)2+. J. Am. Chem. Soc. 1993, 115, 6699–6704.
  • Barton, J. K. Tris (phenanthroline) metal complexes: probes for DNA helicity. J. Biomol. Struct. Dyn. 1983, 1, 621–632.
  • Basile, L. A.; Barton, J. K. Metallonucleases: real and artificial. Met. Ions Biol. Syst. 1989, 25, 31–103.
  • Jamieson, E. R.; Lippard, S. J. Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 1999, 99, 2467–2498.
  • Kozhevnikov, I. V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev. 1998, 98, 171–198.
  • Pogozelski, W. K.; Tullius, T. D. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 1998, 98, 1089–1108.
  • Rodrıguez-Arguelles, M. C.; Ferrari, M. B.; Bisceglie, F.; Pelizzi, C.; Pelosi, G.; Pinelli, S.; Sassi, M. Synthesis, characterization and biological activity of Ni, Cu and Zn complexes of isatin hydrazones. J. Inorg. Biochem. 2004, 98, 313–321.
  • Sigman, D. S.; Bruice, T. W.; Mazumder, A.; Sutton, C. L. Targeted chemical nucleases. Acc. Chem. Res. 1993, 26, 98–104.
  • Williams, R. J. P. Metal ions in biological systems. Biol. Rev. 1953, 28, 381–412.
  • Halcrow, M. A.; Christou, G. Biomimetic chemistry of nickel. Chem. Rev. 1994, 94, 2421–2481.
  • Meyer, F.; Kozlowski, H.; McCleverty, J.; Meyer, T. Comprehensive Coordination Chemistry II; Elsevier, New York, 2003.
  • Sudhamani, C. N.; Bhojya Naik, H. S.; Girija, D.; Sangeetha Gowda, K. R.; Giridhar, M.; Arvinda, T. Novel complexes of Co(III) and Ni(II) containing peptide ligands: Synthesis, DNA binding and photonuclease activity. Spectrochim. Acta-Part A 2014, 118, 271–278.
  • Zhang, X. L.; Cheng, K. Synthesis, crystal structure, and DNA-binding property of Ni(II) complex based on 2,5-dimercapto-1,3,4-thiadiazole, and 1,10-phenanthroline. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2013, 43, 1019–1024.
  • Bombicz, P.; Forizs, E.; Madarász, J.; Deák, A.; Kálmán, A. Inclusion compounds containing a drug: structure and thermal stability of the first clathrates of nitrazepam and isothiocyanato ethanol complexes of Co(II) and Ni(II). Inorg. Chim. Acta 2001, 315, 229–235.
  • Morgant, G.; Bouhmaida, N.; Balde, L.; Ghermani, N. E.; d'Angelo J. Low-temperature (100 K) crystal structures of pentaaqua(5-nitrosalicylato) complexes of magnesium(II), zinc(II), cobalt(II) and nickel(II): A π–π stacked and hydrogen bonded 3D supramolecular architecture. Polyhedron 2006, 25, 2229–2235.
  • Yeşilel, O. Z.; Soylu, M. S.; Ölmez, H.; Büyükgüngör, O. Synthesis and spectrothermal studies of vitamin B13 complexes of cobalt(II) and nickel(II) with 4-methylimidazole: Crystal structure of [Ni(HOr)(H 2O)(4-Meim) 3] 2 · 5H 2O. Polyhedron 2006, 25, 2985–2992.
  • Alexiou, M.; Tsivikas, I.; Dendrinou-Samara, C.; Pantazaki, A. A.; Trikalitis, P.; Lalioti, N.; Kyriakidis, D. A.; Kessissoglou, D. P. High nuclearity nickel compounds with three, four or five metal atoms showing antibacterial activity. J. Inorg. Biochem. 2003, 93, 256–264.
  • Kasuga, N. C.; Sekino, K.; Koumo, C.; Shimada, N.; Ishikawa, M.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 4- and 6-coordinate nickel(II) complexes with three thiosemicarbazones and semicarbazone ligands. J. Inorg. Biochem. 2001, 84, 55–65.
  • Kurtaran, R.; Yıldırım, L. T.; Azaz, A. D.; Namli, H.; Atakol, O. Synthesis, characterization, crystal structure and biological activity of a novel heterotetranuclear complex: [NiLPb(SCN)2(DMF)(H2O)]2, bis-{[μ-N,N′-bis(salicylidene)-1,3-propanediaminato-aqua-nickel(II)](thiocyanato)(μ-thiocyanato)(μ-N,N′-dimethylformamide)lead(II)}. J. Inorg. Biochem. 2005, 99, 1937–1944.
  • Campo, R.; Criado, J. J.; García, E; Hermosa, M. R.; Jiménez-Sánchez, A.; Manzano, J. L.; Monte, E.; Rodriguez-Fernandez, E.; Sanz, F. Thiourea derivatives and their nickel(II) and platinum(II) complexes: antifungal activity. J. Inorg. Biochem. 2002, 89, 74–82.
  • Luo, W.; Meng, X.; Sun, X.; Xiao, F.; Shen, J.; Zhou, Y. et al. Synthesis, crystal structure and bioactivity of a novel linear trinuclear nickel(II) complex. Inorg. Chem. Commun. 2007, 10, 1351–1354.
  • Afrasiabi, Z.; Sinn, E.; Lin, W.; Ma, Y.; Campana, C.; Padhye, S. Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. J. Inorg. Biochem. 2005, 99, 1526–1531.
  • Buschini, A.; Pinelli, S.; Pellacani, C.; Giordani, F.; Ferrari, M. B.; Bisceglie, F.; Giannetto, M.; Pelosi, G.; Tarasconi, P. Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity. J. Inorg. Biochem. 2009, 103, 666–677.
  • Tabatabaee, M.; Bordbar, M.; Ghassemzadeh, M.; Tahriri, M.; Tahrir, M.; Mehri Lighvan, Z.; Neumüller, B. Two new neutral copper (II) complexes with dipicolinic acid and 3-amino-1H-1,2,4-triazole formed under different reaction conditions: synthesis, characterization, molecular structures and DNA-binding studies. Eur. J. Med. Chem. 2013, 70, 364–371.
  • Tabatabaee, M. (2-Aminopyrimidine-k N1)diaqua(pyridine-2,6-dicarboxylato-k3O2,N,O6)nickel(II) monohydrate. Acta Crystallogr. Sect. E: Struct. Rep. Online. 2010, 66, m647–m648.
  • Hu, Z.; Tong, C. Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA. Anal. Chim. Acta 2007, 587, 187–193.
  • Wu, J.-Z.; Yuan, L. Synthesis and DNA interaction studies of a binuclear ruthenium(II) complex with 2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline as bridging and intercalating ligand. J. Inorg. Biochem. 2004, 98, 41–45.
  • Marmur, J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 1961, 3, 208.
  • Reichmann, M. E.; Rice, S. A.; Thomas, C. A.; Doty, P. A further examination of the molecular weight and size of desoxypentose nucleic acid. J. Am. Chem. Soc. 1954, 76, 3047–3053.
  • Kelly, J. M.; Tossi, A. B.; McConnell, D. J.; OhUigin, C. A study of the interactions of some polypyridylruthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. NAR 1985, 13, 6017–6034.
  • Wolfe, A.; Shimer, G. H.; Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 1987, 26, 6392–6396.
  • Skyrianou, K. C.; Perdih, F.; Turel, I.; Kessissoglou, D. P.; Psomas, G. Nickel-quinolones interaction: Part 3-Nickel(II) complexes of the antibacterial drug flumequine. J. Inorg. Biochem. 2010, 104, 740–749.
  • Psomas, G. Mononuclear metal complexes with ciprofloxacin: synthesis, characterization and DNA-binding properties. J. Inorg. Biochem. 2008, 102, 1798–811.
  • Eftink, M. R.; Ghiron, C. A. Fluorescence quenching studies with proteins. Anal. Biochem. 1981, 114, 199–227.
  • Peng, B.; Chao, H.; Sun, B.; Li, H.; Gao, F.; Ji, L.-N. Synthesis, DNA-binding and photocleavage studies of cobalt(III) mixed-polypyridyl complexes: [Co(phen)2(dpta)]3+ and [Co(phen)2(amtp)]3+. J. Inorg. Biochem. 2007, 101, 404–411.
  • Xi, P-X; Xu, Z-H; Liu, X-H; Chen, F-J; Huang, L.; Zeng, Z-Z. Synthesis, characterization, antioxidant activity, and DNA-binding studies of 1-cyclohexyl-3-tosylurea and Its Nd(III), Eu(III) complexes. Chem. Pharm. Bull. 2008, 56, 541–546.
  • Meric, B.; Kerman, K.; Ozkan, D.; Kara, P.; Erensoy, S.; Akarca, U.; Mascini, M.; Ozsoz, M. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta 2002, 56, 837–846.
  • Fujimoto, B. S.; Clendenning, J. B.; Delrow, J. J.; Heath, P. J.; Schurr, M. Fluorescence and photobleaching studies of methylene blue binding to DNA. J. Phys. Chem. 1994, 98, 6633–6643.
  • Long, E.; Barton, J. On demonstrating DNA intercalation. Acc. Chem. Res. 1990, 23, 271–273.
  • Lakowicz, J. R.; Weber, G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 1973, 12, 4171–4179.
  • Lakowicz, J.; Masters, B. Principles of Fluorescence Spectroscopy; Springer, 2008.
  • Barton, J. K.; Goldberg, J. M.; Kumar, C. V.; Turro, N. J. Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity. J. Am. Chem. Soc. 1986, 108, 2081–2088.
  • Xiao, S.; Lin, W.; Wang, C.; Yang, M. Synthesis and biological evaluation of DNA targeting flexible side-chain substituted Î2;-carboline derivatives. Bioorg. Med. Chem. Lett. 2001, 11, 437–441.
  • Tselepi-Kalouli, E.; Katsaros, N. The interaction of [Ru(NH3)5Cl]2+ and [Ru(NH3)6]3+ ions with DNA. J. Inorg. Biochem. 1989, 37, 271–282.
  • Messori, L.; Casini, A.; Vullo, D.; Haroutiunian, S. G.; Dalian, E. B.; Orioli, P. Effects of two representative antitumor ruthenium(III) complexes on thermal denaturation profiles of DNA. Inorg. Chim. Acta 2000, 303, 283–286.
  • Neyhart, G. A.; Grover, N.; Smith, S. R.; Kalsbeck, W. A.; Fairley, T. A.; Cory, M. et al. Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV). J. Am. Chem. Soc. 1993, 115, 4423–8.
  • Waring, M. J. Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 1965, 13, 269–282. Epub 1965/08/01.
  • Nair, R. B.; Teng, E. S.; Kirkland, S. L.; Murphy, C. J. Synthesis and DNA-binding properties of [Ru(NH3)4dppz]2+. Inorg. Chem. 1998, 37, 139–141.
  • Scaria, P. V.; Shafer, R. H. Binding of ethidium bromide to a DNA triple helix: evidence for intercalation. J. Biol. Chem. 1991, 266, 5417–5423.
  • Akdi, K.; Vilaplana, R. A.; Kamah, S.; Navarro, J. A. R.; Salas, J. M.; González-Vílchez, F. Study of the biological effects and DNA damage exerted by a new dipalladium-Hmtpo complex on human cancer cells. J. Inorg. Biochem. 2002, 90, 51–60.
  • Palchaudhuri, R.; Hergenrother, P. J. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 2007, 18, 497–503.
  • Strekowski, L.; Wilson, B. Noncovalent interactions with DNA: An overview. Mutat. Res.-Fundam. Mol Mech. Mutag. 2007, 623, 3–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.