436
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Syntheses of 5-Hydroxymethylfurfural Through Glucose Dehydration in Diphasic Solvent System on ZrO2 and SO42−/TiO2-SiO2 Catalyst

, , , , &
Pages 177-184 | Received 29 Nov 2013, Accepted 23 Aug 2014, Published online: 29 Sep 2015

References

  • Guo, F.; Fang, Z.; Zhou, T. J. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide–ionic liquid mixtures. Bioresour. Technol. 2012, 112, 313–318.
  • Tong, X. L.; Ma, Y.; Li, Y. D. An efficient catalytic dehydration of fructose and sucrose to 5-hydroxymethylfurfural with protic ionic liquids. Carbohydr. Res. 2010, 345, 1698–1701.
  • Tong, X. L.; Ma, Y.; Li, Y. D. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A-Gen. 2010, 385, 1–13.
  • Hu, Z.; Liu, B.; Zhang, Z. H.; Chen, L. Q. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by acidic ionic liquids in dimethyl sulfoxide. Ind. Crops. Products. 2013, 50, 264–269.
  • Qi, X. H.; Watanabe, M.; Aida, T. M.; Smith, R. L. Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Bioresource. Technol. 2012, 109, 224–228.
  • Gallezot, P. Catalytic routes from renewables to fine chemicals. Catal. Today 2007, 121, 76–91.
  • Moreau, C.; Belgacem, M. N.; Gandini, A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Topics. Catalysis. 2004, 27, 11–30.
  • Gandini, A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 2008, 41, 9491–9504.
  • Cao, Q.; Guo, X. C.; Yao, S. X.; Guan, J.; Wang, X. Y.; Mu, X. D.; Zhang, D. K. Conversion of hexose into 5-hydroxymethylfurfural in imidazolium ionic liquids with and without a catalyst. Carbohydr. Res. 2011, 346, 956–959.
  • Jing, Q.; Lǚ, X. Y. Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chinese. Chem, J. Eng. 2008, 16, 890–894.
  • J. B. Paine III; Pithawalla, Y. B.; Naworal, J. D. Carbohydrate pyrolysis mechanisms from isotopic labeling Part 4. The pyrolysis of D-glucose: the formation of furans. Anal, J. Appl. Pyrol. 2008, 83, 37–63.
  • Lewkowski, J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc 2001, 1, 17–54.
  • Carlini, C.; Patrono, P.; Galletti, A. M. R.; Sbrana, G. Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl. Catal. A–Gen. 2004, 275, 111–118.
  • Fan, C. Y.; Guan, H. Y.; Zhang, H.; Wang, J. H.; Wang, S. T.; Wang, X. H. Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass. Bioenerg. 2011, 35, 1–7.
  • Watanabe, M.; Aizawa, Y.; Iida, T.; Aida, T. M.; Levy, C.; Sue, K.; Inomata, H. Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr. Res. 2005, 340, 1925–1930.
  • Ohara, M.; Takagaki, A.; Nishimura, S.; Ebitani, K. Syntheses of 5-hydroxymethylfurfural and levoglucosan by selective dehydration of glucose using solid acid and base catalysts. Appl. Catal. A-Gen. 2010, 383, 149–155.
  • Hansen, T. S.; Woodley, J. M.; Riisager, A. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydr. Res. 2009, 344, 2568–2572.
  • Binder, J. B.; Raines, R. T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. Amer. J. Chem. Soc. 2009, 131, 1979–1985.
  • Tyrlik, S. K.; Szerszen, D.; Olejnik, M.; Danikiewicz, W. Selective dehydration of glucose to hydroxymethylfurfural and a one-pot synthesis of a 4-acetylbutyrolactone from glucose and trioxane in solutions of aluminium salts. Carbohydr. Res. 1999, 315, 268–272.
  • Aida, T. M.; Sato, Y.; Watanabe, M.; Tajima, K.; Nonaka, T.; Hattori, H.; Arai, K. J. Dehydration of d-glucose in high temperature water at pressures up to 80Mpa. Supercrit. Fluid 2007, 40, 381–388.
  • Chheda, J. N.; Dumesic, J. A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal. Today 2007, 123, 59–70.
  • Chheda, J. N.; Román-Leshkov, Y.; Dumesic, J. A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 2007, 9, 342–350.
  • Hu, S.; Zhang, Z.; Zhou, Y.; Han, B.; Fan, H.; Li, W.; Song, J.; Xie, Y. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green. Chem. 2008, 10, 1280–1283.
  • McNeff, C. V.; Nowlan, D. T.; McNeff, L. C.; Yan, B.; Fedie, R. L. Continuous production of 5-hydroxymethylfurfural from simple and complex carbohydrates. Appl. Catal. A-Gen. 2010, 384, 65–69.
  • Qi, X.; Watanbe, M.; Aida, T. M.; Smith, R. L. Jr. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun. 2008, 9, 2244–2249.
  • Mondal, A.; Ram, S. Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2•xH2O precursor. Ceram. Int. 2004, 30, 239–249.
  • Aramendía, M. A.; Borau, V.; Jiménez, C.; Marinas, A.; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J. Magnesium-containing mixed oxides as basic catalysts: base characterization by carbon dioxide TPD–MS and test reactions. Mol, J. Catal. A-Chem. 2004, 218, 81–90.
  • Yan, H.; Yang, Y.; Tong, D.; Xiang, X.; Hu, C. Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO42−/ZrO2 and SO42−/ZrO2-Al2O3 solid acid catalysts. Catal. Commun. 2009, 10, 1558–1563.
  • Samantaray, S. K.; Parida, K. Studies on anion-promoted titania: 3. Effect of concentration and source of phosphate ion, method of preparation, and activation temperature on redox, acid–base, textural and catalytic properties of titania. Mol, J. Catal. A-Chem. 2001, 176, 151–163.
  • Pabón, E.; Retuert, J.; Quijada, R.; Zarate, A. TiO2–SiO2 mixed oxides prepared by a combined sol–gel and polymer inclusion method. Micropor. Mesopor. Mater. 2004, 67, 195–203.
  • Guan, J.; Cao, Q.; Guo, X.; Mu, X. The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: A theoretical study. Comput. Theor. Chem. 2011, 963, 453–462.
  • Bates, L.; Ames, J. M.; MacDougall, D. B.; Taylor, P. C. Laboratory reaction cell to model Maillard color development in a starch-glucose-lysine system. Food, J. Sci. 1998, 63, 991–996.
  • Gentry, T. S.; Roberts, J. S. Formation kinetics and application of 5-hydroxymethylfurfural as a time–temperature indicator of lethality for continuous pasteurization of apple cider. Innov. Food. Sci. Emerg. Technol. 2004, 5, 327–333.
  • Takagaki, A.; Ohara, M.; Nishimura, S.; Ebitani, K. A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem. Commun. 2009, 41, 6276–6278.
  • Hu, S.; Willey, R. J.; Notari, B. An investigation on the catalytic properties of titania–silica materials. Catal, J. 2003, 220, 240–248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.