184
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Interpenetrating 3D Framework Based on Inorganic Lanthanide Sulfate Rod Secondary Building Unit Involving In Situ Cleavage of a Sulfide–Sulfide Bond

Pages 548-551 | Received 14 Apr 2014, Accepted 04 Nov 2014, Published online: 18 Nov 2015

References

  • Yaghi, O. M.; O′Keefe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423,705–714.
  • O′Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.
  • Zhao, Ying.; Deng, D.-S.; Ma, L.-F.; Ji, B.-M.; Wang, L.-Y. A new copper-based metal–organic framework as a promising heterogeneous catalyst for chemo- and regio-selective enamination of b-ketoesters. Chem. Commun. 2013, 49, 10299–10301.
  • Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162.
  • Chen, B.; Xiang, S.; Qian, G. Metal-organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 2010, 43, 1115–1124.
  • Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269–9290.
  • Qiu, S.; Zhu, G. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties. Coord. Chem. Rev. 2009, 253, 2891–2911.
  • Zhang, X.-M. In situ ligand synthesis under hydro(solvo)thermal conditions. Coord. Chem. Rev. 2005, 249, 1201–1219.
  • Chen, X.-M.; Tong, M.-L. Solvothermal in-situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 2007, 40, 162–170.
  • Zhang, X.-M. Amicroporous zinc phosphono carboxylate with a zeolite ABW framework via the trialkyl phosphono carboxylate route: in situ synthesis and characterization of Na[Zn(O3PC2H4CO2)]·H2O. Eur. J. Inorg. Chem. 2004, 544–548.
  • Zheng, Y.-Z.; Tong, M.-L.; Chen, X.-M. Syntheses, structures and magnetic properties of five coordination polymers derived via in situ metal–ligand reactions of 2-phenyl-malonic acid. J. Mol. Struct. 2006, 796, 9–17.
  • Zhang, J.-P.; Lin, Y.-Y.; Huang, X.-C.; Chen, X.-M. Copper(I) 1,2,4-triazolates and related complexes: studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties. J. Am. Chem. Soc. 2005, 127, 5495–5506.
  • Li, C.-P.; Zhao, X.-H.; Chen, X.-D.; Yu, Q.; Du, M. Metal-involved solvothermal interconversions of pyrazinyl substituted azole derivatives: controllability and mechanism. Cryst. Growth Des. 2010, 10, 5034–5042.
  • Ma, L.-F.; Wang, L.-Y.; Du, M. A novel 3D Mn(II) coordination polymer involving 4,4′-dipyridylsulfide and 4,4′-dipyridyltrisulfide obtained by in situ ligand formation from 4,4′-dipyridyldisulfide. CrystEngComm 2009, 11, 2593–2596.
  • Rowland, C. E.; Belai, N.; Knope, E.; Cahill, C. L. Hydrothermal synthesis of disulfide-containing uranyl compounds: in situ ligand synthesis versus direct assembly. Cryst. Growth Des. 2010, 10, 1390–1398.
  • Rowland, C. E.; Cantos, P. M.; Toby, B. H.; Frisch, M.; Deschamps, J. R.; Cahill, C. L. Controlling disulfide bond formation and crystal growth from 2-mercaptobenzoic acid. Cryst. Growth Des. 2011, 11, 1370–1374.
  • Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005, 127, 1504–1518.
  • Sheldrick, G. M. SHELXTL NT, Version 5.1; Program for Solution and Refinement of Crystal Structures; University of Göttingen, Germany, 1997.
  • Song, Y.; Yin, X.; Tu, B.; Pang, Q.; Li, H.; Ren, X.; Wang, B.; Li, Q. Metal–organic frameworks constructed from mixed infinite inorganic units and adenine. CrystEngComm 2014, 16, 3082–3085.
  • Chen, W.-X.; Wu, S.-T.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Construction of a three-fold parallel interpenetration network and bilayer structure based on copper(II) and trimesic acid. Cryst. Growth Des. 2007, 7, 1171–1175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.