362
Views
3
CrossRef citations to date
0
Altmetric
Articles

Carbon nanotubes: Their role in engineering applications and challenges ahead

, &
Pages 188-196 | Received 28 Oct 2015, Accepted 26 Dec 2015, Published online: 19 May 2016

References

  • Pfautsch, E. Challenges in Commercializing Carbon Nanotube Composites; 2013. Available at: http://www.wise-intern.org/journal/2007/pfautschfinal07.pdf (accessed 10 November 2014).
  • Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A. A.; Daiem, A. A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 2015, 10, 358.
  • Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: a review. Asian J. Pharm Clin. Res. 2009, 2, 17–27.
  • Vadukumpully, S.; Paul, J.; Mahanta, N.; Valiyaveettil, S. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 2011, 49, 198–205.
  • Baddour, C. E.; Briens, C. Carbon nanotube synthesis: a review. Int. J. Chem. React. Eng. 2005, 3, 1542–6580.
  • Robertson, J. Realistic applications of CNTs. Mater. Res. 2004, 7, 46–52.
  • Carbon Nanotechnologies Incorporated. Buckytube Properties & Uses. Available at:http://www.cnanotech.com/pages/resources_and_news/3–3_buckytube_links.html (accessed 12 February 2011).
  • Hsieh, C. T.; Teng, H.; Chen, W. Y.; Cheng, Y. S. Synthesis, characterization, and electrochemical capacitance of amino-functionalized carbon nanotube/ carbon paper electrodes. Carbon 2010, 48, 4219–4229.
  • Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R. et al.; Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 2006, 92, 5–22.
  • Karthikeyan, S.; Mahalingam, P.; Karthik, M. Large scale synthesis of carbon nanotubes. J. Chem. 2009, 6, 1–12.
  • Shanov, V.; Yun, Y. H.; Schulz, M. J. Synthesis and characterization of carbon nanotube materials. J. Univ. Chem. Technol. Metallurg. 2006, 41, 377–390.
  • Caussat, B.; Serp, P.; Vahlas, C. Fluidized Bed Chemical Vapor Deposition: State of the Art and Main Challenges 2003. Available at: https://www.electrochem.org/dl/ma/203/pdfs/2164.pdf (accessed 15 March 2011).
  • Daenen, M.; Fouw, R. D.; Hamers, B.; Janssen, P. G. A.; Schouteden, K. et al.; The Wondrous World of Carbon Nanotubes: A Review of Current Carbon Nanotubes Technologies; Multidisciplinary Project Group, Eindhoven University of Technology, Eindhoven, the Netherlands, 2003.
  • O'Connell, M. J. Carbon Nanotubes: Properties and Applications; CRC Press, Boca Raton, FL, 2006.
  • Nanocyl. Electrically Conductive Plastics; Available at: http://www.nanocyl.com/CNT-Expertise-Centre/Carbon-Nanotubes (accessed ).
  • AZoNano. Carbon Nanotubes: Overview of Properties, Classification, Fabrication, and Synthesis; 2007. Available at: http://www.azonano.com/article.aspx?ArticleID=1199 (accessed 15 March 2011).
  • Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; John, H. A. Carbon nanotubes: present and future commercial applications. Science 2013, 339, 535–539.
  • Frackowiaka, E.; Beguinb, F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 2012, 40, 1775–1787.
  • Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150.
  • Wong, S. S.; Harper, J. D.; Lansbury, P. T.; Lieber, C. M. Carbon nanotube tips: high-resolution probes for imaging biological systems. J. Am. Chem. Soc. 1998, 120, 603–604.
  • Kim, P.; Lieber, C. M. Nanotube nanotweezers. Science 1999, 286, 2148–2150.
  • Chen, J.; Hamon, M.; Hu, H.; Chen, Y.; Rao, A. M. et al.; Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95–98.
  • Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometer sized probes for chemistry and biology. Nature 1998, 394, 52–55.
  • Kong, J.; Chapline, M. G.; Dai, H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater. 2001, 13, 1384–1386.
  • Ajayan, P. M.; Zhou, O. Z. Applications of carbon nanotubes. Topics Appl. Phys. 2001, 80, 391–425.
  • Overney, G.; Zhong, W.; Tomanek, D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys. D 1993, 27, 93–96.
  • Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.
  • Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514.
  • Yu, M.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F. et al.; Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.
  • Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799.
  • Yakobson, B. I. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl. Phys. Lett. 1998, 72, 918–920.
  • Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J. Comput.-Aided Mater. Des. 1996, 3, 173–182.
  • Chou, T. W.; Gao, L.; Thostenson, E. T.; Zhang, Z.; Byun, J. H. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 2010, 70, 1–19.
  • Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 1994, 265, 1212–1214.
  • Wagner, H. D.; Lourie, O.; Feldman, Y.; Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 1998, 72, 188–190.
  • Jin, L.; Bower, C.; Zhou, O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 1998, 73, 1197–1199.
  • Chang, S.; Doremus, R. H.; Ajayan, P. M.; Siegel, R. W. Processing and mechanical properties of C-nanotube reinforced alumina composites. 24th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science, 2008.
  • Ago, H.; Petritsch, K.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv. Mater. 1999, 11, 1281–1285.
  • Nutzenadel, C.; Zuttel, A.; Chartouni, D.; Schlapbach, L. Electrochemical storage of hydrogen in nanotube materials. Electrochem. Solid State Lett. 1999, 2, 30–32.
  • Rajalakshmi, N.; Dhathathreyan, K. S.; Govindaraj, A.; Satishkumar, B. C. Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage. Electrochim. Acta 2004, 45, 4511–451.
  • Gao, X. P.; Lan, Y.; Pan, G. L.; Wu, F.; Qu, J. Q. et al.; Electrochemical hydrogen storage by carbon nanotubes decorated with metallic nickel. Electrochem. Solid State Lett. 2001, 4, A173–A175.
  • Dai, G. P.; Liu, C.; Liu, M.; Wang, M. Z.; Cheng, H. M. Electrochemical hydrogen storage behavior of ropes of aligned single-walled carbon nanotubes. Nano Lett. 2002, 2, 503–506.
  • Chemistry Explained: Solar Cells; 2016. Available at: http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html (accessed 2 April 2011).
  • Kymakis, E.; Alexandrou, I.; Amaratunga, G. A. J. High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys. 2003, 93, 1764–1768.
  • Reyes, M. R.; Sandoval, R. L. Crystalline Exit Pathways Enhance Efficiency in Organic Solar Cells; 2007. Available at: http://spie.org/newsroom/0885-crystalline-exit-pathways-enhance-efficiency-in-organic-solar-cells (accessed 10 April 2011).
  • Liu, Z.; He, D.; Wang, Y.; Wu, H.; Wang, J. Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells. Solar Energy Mater. Solar Cells 2010, 94, 1196–1200.
  • Ltaief, S.; Bouazizi, A.; Davenas, J. Charge transport in carbon nanotubes-polymer composite photovoltaic cells. Materials 2009, 2, 710–718.
  • Kymakis, E.; Amaratunga, G. A. J. Photovoltaic cells based on dyesensitisation of single-wall carbon nanotubes in a polymer matrix. Solar Energy Mater. Solar Cells 2003, 80, 465–472.
  • Raffaelle, R. P.; Landi, B. J.; Harris, J. D.; Bailey, S. G.; Hepp, A. F. Carbon nanotubes for power applications. Mater. Sci. Eng. B 2005, 116, 233–243.
  • Habak, D. H.; Bergeret, C.; Cousseau, J.; Nunzi, J. M. Improving the current density jsc of organic solar cells P3HT: PCMB by structuring the photoactivelayer with functionalized SWNCTs. Solar Energy Mater. Solar Cells 2011, 95, S53–S56.
  • Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.
  • Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M. et al.; Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.
  • Bower, C.; Zhou, O.; Zhu, W.; Ramirez, A. G.; Kochanski, G. P. et al.; Fabrication and Field Emission Properties of Carbon Nanotube Cathodes. MRS Proceedings, 1999, 593.
  • Zhu, W.; Bower, C.; Zhou, O.; Kochanski, G. P.; Jin, S. Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 1999, 75, 873–875.
  • Sun, D. M.; Timmermans, M. Y.; Tian, Y.; Nasibulin, A. G.; Kauppinen, E. I. et al.; Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 2011, 6, 156–161.
  • McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y. et al.; Low voltage, low-power, organic light-emitting transistors for active matrix displays. Science 2011, 332, 570–573.
  • Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. et al.; Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.
  • Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C. et al.; All-printed and roll-toroll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron. Device 2010, 57, 571–580.
  • Park, H.; Afzali, A.; Han, S. J.; Tulevski, D. S.; Franklin, A. D. et al.; Highdensity integration of carbon nanotubes via chemical self-assembly. Nat. Nanotechnol. 2012, 7, 787–791.
  • Gao, G.; Vecitis, C. D. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ. Sci. Technol. 2011, 45, 9726–9734.
  • Rahaman, M. S.; Vecitis, C. D.; M. Elimelech, M. Electrochemical carbonnanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ. Sci. Technol. 2012, 46, 1556–1564.
  • Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.; Artyukhin, A. B. et al.; Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.
  • Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112, 1427–1434.
  • Eklund, P.; Ajayan, P.; Blackmon, R.; Hart, A. J.; Kong, J.; Kibng, J.; Pradhan, B.; Bao, A.; Rinzler, A. International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications; World Technology Evaluation Center Report, 2007.
  • Wijewardane, S. Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Solar Energy 2009, 83, 1379–1389.
  • Wernik, J. M.; Meguid, S. A. Recent developments in multifunctional nanocomposites using carbon nanotubes. Appl. Mech. Rev. 2010, 63, 050801–40.
  • Hou, P. X.; Liu, C.; Cheng, H. M. Purification of carbon nanotubes. Carbon 2008, 46, 2003–2025.
  • Ultrasonic Dispersing of Carbon Nanotubes (CNT). Available at: http://www.hielscher.com/ultrasonics/nano_03.htm (accessed 7 July 2014).
  • Kayat, J.; Gajbhiye, V.; Tekade, R. K.; Jain, N. K. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 2010, 7, 40–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.