397
Views
39
CrossRef citations to date
0
Altmetric
Articles

Synthesis of CdO nanoparticles using direct chemical precipitation method: Fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples

, , , , &
Pages 347-353 | Received 27 Mar 2015, Accepted 01 May 2016, Published online: 27 Jul 2016

References

  • Frag, E. Y. Z.; Zayed, M. A.; Omar, M. M.; Elashery, S. E. A.; Mohamed, G. G. Potentiometric determination of chlorpromazine HCl using carbon paste electrode in pure and pharmaceutical preparations. Int. J. Electrochem. Sci. 2012, 7, 650–662.
  • http://en.wikipedia.org/wiki/Chlorpromazine; 23 December 2014.
  • Hamid, R. S.; Yadollah, Y.; Reza, H. H. B. A. Extraction and determination of trace amounts of chlorpromazine in biological fluids using hollow fiber liquid phase microextraction followed by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2007, 45, 769–774.
  • Sultan, S. M. Flow injection method for the assay of phenothiazine neuroleptics in pharmaceutical preparations using ammonium metavanadate. Analyst 1991, 116, 177–181.
  • Sultan, S. M. Computer assisted optimization of a flow-injection method for the assay of promethazine, chlorpromazine and trimeprazine in drug formulations. Talanta 1993, 40, 681–686.
  • Sales, M. G. F.; Tomas, J. F. C.; Lavandeira, S. R. Flow injection potentiometric determination of chlorpromazine. J. Pharm. Biomed. Anal. 2006, 41, 1280–1286.
  • Ortuno, J. A.; Hernandez, J.; Pedreno, S. C. Ion-selective electrode for the determination of some multidrug resistance reversers. Sens. Actuators B 2006, 119, 282–287.
  • Yamazaki, C.; Suzaki, N.; Nakao, M.; Kamino, S.; Yamaguchi, T.; Fujita, Y. Spectrophotometric determination of chlorpromazine and its related drugs by ternary complex formation with o-sulfophenylfluorone-molybdenum (VI). Bunseki. Kagaku 2006, 55, 733–737.
  • Sanchez de-la-Torre, C.; Martinez, M. A.; Almarza, E. Determination of several psychiatric drugs in whole blood using capillary gas-liquid chromatography with nitrogen phosphorus detection: comparison of two solid phase extraction procedures. Forens. Sci. Int. 2005, 155, 193–204.
  • Mohamed, F. A.; Mohamed, H. A.; Hussein, S. A.; Ahmed, S. A. A validated spectrofluorimetric method for determination of some psychoactive drugs. J. Pharm. Biomed. Anal. 2005, 39, 139–146.
  • Lara, F. J.; Campana, A. M. G.; Barrero, F. A.; Sendra, J. M. B. Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogram per milliliter concentration range using field-amplified sample injection. Electrophoresis 2005, 26, 2418–2429.
  • Parvin, M. H. Graphene paste electrode for detection of chlorpromazine. Electrochem. Commun. 2011, 13, 366–369.
  • Bouchta, D.; Izaoumen, N.; Zejli, H.; El Kaoutit, M.; Temsamani, K. R. A novel electrochemical synthesis of poly-3-methylthiophene-γ-cyclodextrin film: Application for the analysis of chlorpromazine and some neurotransmitters. Biosens. Bioelect. 2005, 20, 2228–2235.
  • Gupta, V. K.; Jain, A. K.; Maheshwari, G.; Lang, H.; Ishtaiwi, Z. Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens. Actuators B 2006, 117, 99–106.
  • Gupta, V. K.; Singh, A. K.; Mehtab, S.; Gupta, B. A cobalt(II)-selective PVC membrane based on a Schiff base complex of N,N′-bis(salicylidene)-3,4-diaminotoluene. Anal. Chim. Acta. 2006, 566, 5–10.
  • Gupta, V. K.; Singh, L. P.; Singh, R.; Upadhyay, N.; Kaur, S. P.; Sethi, B. A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix. J. Mol. Liq. 2101, 174, 11–16.
  • Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Atar, N.; Yola, M. L.; Gupta, V. K.; Ensafi, A. A. Ind. Eng. Chem. Res. 2015, 54, 3634–3639.
  • Gupta, V. K.; Jain, R.; Radhapyari, K.; Jadon, N.; Agarwal, S. Voltammetric techniques for the assay of pharmaceuticals—a review. Anal. Biochem. 2011, 408, 179–196.
  • Goyal, R. N.; Gupta, V. K.; Bachheti, N.; Sharma, R. A. Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene-C60 coated gold electrode. Electroanalysis 2008, 20, 757–764.
  • Gupta, V. K.; Ganjali, M. R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit. Rev. Anal. Chem. 2011, 41, 282–313.
  • Goyal, R. N.; Gupta, V. K.; Chatterjee, S. Electrochemical oxidation of 2′,3′-dideoxyadenosine at pyrolytic graphite electrode. Electrochim. Acta 2008, 53, 5354–5360.
  • Gupta, V. K.; Sethi, B.; Sharma, R. A.; Agarwal, S.; Bharti, A. Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J. Mol. Liq. 2013, 177, 114–118.
  • Karimi-Maleh, H.; Rostami, S.; Gupta, V. K.; Fouladgar, M. Evaluation of ZnO nanoparticle ionic liquid composite as a voltammetric sensing of isoprenaline in the presence of aspirin for liquid phase determination. J. Mol. Liq. 2015, 201, 102–107.
  • Pahlavan, A.; Karimi-Maleh, H.; Karimi, F.; Aboukazempour Amiri, M.; Khoshnama, Z.; Roodbari Shahmiri, M.; Keyvanfard, M. Application of CdO nanoparticle ionic liquid modified carbon paste electrode as a high sensitive biosensor for square wave voltammetric determination of NADH. Mater. Sci. Eng. C 2014, 45, 210–215.
  • Sanati, A. L.; Karimi-Maleh, H.; Badiei, A.; Biparva, P.; Ensafi, A. A. A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. Mater. Sci. Eng. C 2014, 35, 379–385.
  • Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M. A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT - Food Sci. Technol. 2014, 57, 679–685.
  • Taherkhani, A.; Jamali, T.; Hadadzadeh, H.; Karimi-Maleh, H.; Beitollahi, H.; Taghavi, M.; Karimi, F. ZnO nanoparticle-modified ionic liquid-carbon paste electrode for voltammetric determination of folic acid in food and pharmaceutical samples. Ionics 2014, 20, 421–429.
  • Najafi, M.; Khalilzadeh, M. A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem. 2014, 158, 125–131.
  • Haghighi, B.; Hamidi, H. Electrochemical characterization and application of carbon ionic liquid electrodes containing 1: 12 phosphomolybdic acid. Electroanalysis 2009, 21, 1057–1065.
  • Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys. Chem. Liq. 2013, 51, 704–714.
  • Elyasi, M.; Khalilzadeh, M. A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem. 2013, 141, 4311–4317.
  • Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M. A. Application of ZnO/CNTs Nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods 2013, 6, 1639–1647.
  • Vahedi, J.; Karimi-Maleh, H.; Baghayeri, M.; Sanati, A. L.; Khalilzadeh, M. A.; Bahrami, M. A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples. Ionics 2013, 19, 1907–1914.
  • Tavana, T.; Khalilzadeh, M. A.; Karimi-Maleh, H.; Ensafi, A. A.; Beitollahi, H.; Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J. Mol. Liq. 2012, 168, 69–74.
  • Salmanpour, S.; Tavana, T.; Pahlavan, A.; Khalilzadeh, M. A.; Ensafi, A. A.; Karimi-Maleh, H.; Beitollahi, H.; Kowsari, E.; Zareyee, D. Voltammetric determination of norepinephrine in the presence of acetaminophen using a novel ionic liquid/multiwall carbon nanotubes paste electrode. Mater. Sci. Eng. C 2012, 32, 1912–1918.
  • Sanghavi, B. J.; Srivastava, A. K. Simultaneous voltammetric determination ofacetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 2010, 55, 8638–8648.
  • Sanghavi, B. J.; Srivastava, A. K. Adsorptive stripping differential pulsevoltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim. Acta 2011, 56, 4188–4196.
  • Gupta, V. K.; Yola, M. L.; Atar, N.; Solak, A. O.; Uzun, L.; Üstündağ, Z. Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples. Electrochim Acta 2013, 105, 149–156.
  • Yola, L. M.; Atar, N.; Üstündağ, Z.; Solak, A. O. A novel voltammetric sensor based on p-aminothiophenol functionalized grapheme oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 2013, 698, 9–16.
  • Sanghavi, B. J.; Sitaula, S.; Griep, M. H.; Karna, S. P.; Ali, M. F.; Swami, N. S. Real-time electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal. Chem 2013, 85, 8158–8165.
  • Brahman, P. K.; Dar, R. A.; Pitre, K. S. DNA-functionalized electrochemical biosensor for detection of vitamin B1 using electrochemically treated multiwalled carbon nanotube paste electrode by voltammetric methods. Sens. Actuators B 2013, 177, 807–812.
  • Brahman, P. K.; Dar, R. A.; Tiwari, S.; Pitre, K. S. Electrochemical behavior of gatifloxacin at multi-walled carbon nanotube paste electrode and its interaction with DNA. Rev. Anal. Chem. 2012, 31, 83–92.
  • Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9,10-dihydro-9,10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1,2-diol as a mediator for simultaneous determination of cysteamine, nicotin amide adenine dinucleotide and folic acid. Biosens. Bioelect 2013, 48, 270–275.
  • Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A. A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectr. 2014, 60, 1–7.
  • Gupta, V. K.; Karimi-Maleh, H.; Sadeghi, R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci. 2015, 10, 303–316.
  • Ensafi, A.A.; Taei, M.; Khayamian, T.; Karimi-Maleh, H.; Hasanpour, F. Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J. Solid State Electrochem 2010, 14, 1415–1423.
  • Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Daryanavard, M.; Hadadzadeh, H.; Ensafi, A. A.; Abbasghorbani, M. Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium(II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode. Electroanalysis 2014, 26, 962–970.
  • Roodbari Shahmiri, M.; Bahari, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirnia, N. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B 2013, 177, 70–77.
  • Moradi, R.; Sebt, S. A.; Karimi-Maleh, H.; Sadeghi, R.; Karimi, F.; Bahari, A.; Arabi, H. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Phys. Chem. Chem. Phys. 2013, 15, 5888–5897.
  • Mosaddegh, E.; Hassankhani, A.; Karimi-Maleh, H. Synthesis and characterization of ES/Cu(OH)2 nanocomposite: A novel and high effective catalyst in the green synthesis of pyrano[4,3-b]pyrans. Mater. Sci. Eng. C 2015, 46, 264–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.