157
Views
6
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic activity and statistical determination of ball-shaped zinc oxide NPs with methylene blue dye

, , &
Pages 536-542 | Received 15 Jul 2015, Accepted 01 May 2016, Published online: 05 Aug 2016

References

  • Pompermayer, N. B. ; Porto, M. B. ; Souza, E. F. Environmental analysis of the zinc oxide nano photocatalyst synthesis. Proceedings of the World Academy of Science, Engineering and Technology , 2013, 7 , 1878.
  • Farrokhi, M. ; Yang, J. K. ; Lee, S. M. ; Siboni, M. S. Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. J. Environ. Health Sci. Eng. 2013, 11 , 23.
  • Yang, P. ; Yan, H. ; Mao, S. ; Russo, R. ; Johnson, J. ; Saykally, R. ; Morris, N. ; Pham, J. ; He, R. ; Choi, H. J. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct Mater. 2002, 12 (5), 323.
  • Khalyavka, T. A. ; Kapinus, E. I. ; Viktorova, T. I. ; Tsyba, N. N. Photocatalytic formation of porous CdS/ZnO nanospheres and CdS nanotubes. Theor. Exp. Chem. 2007, 45 (4), 229.
  • Hauser, M. ; Hepting, A. ; Hauschild, R. ; Zhou, H. ; Fallert, J. ; Kalt, H. ; Klingshirn, C. Absolute external luminescence quantum efficiency of zinc oxide. Appl. Phys. Lett. 2008, 92 , 211105.
  • Wahab, R. ; Umar, A. ; Dwivedi, S. ; Tomar, K. J. ; Shin, H. S. ; Hwang, I. H. ZnO Nanoparticles: cytological effect on chick fibroblast cells and antimicrobial activities towards Escherichia coli and Bacillus subtilis. Sci. Adv. Mater. 2013, 5 (11), 1571.
  • Mishra, Y. K. ; Modi, G. ; Cretu, V. ; Postica, V. ; Lupan, O. ; Reimer, T. ; Paulowicz, I. ; Hrkac, V. ; Benecke, W. ; Kienle, L. ; Adelung, R. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photo detection, and gas sensing. ACS Appl. Mater. Interfaces 2015, 7 (26), 14303.
  • Reimer, T. ; Paulowicz, I. ; Röder, R. ; Kaps, S. ; Lupan, O. ; Chemnitz, S. ; Benecke, W. ; Ronning, C. ; Adelung, R. ; Mishra, Y. K. Single step integration of ZnO nano- and microneedles in Si trenches by novel flame transport approach: Whispering gallery modes and photocatalytic properties. ACS Appl. Mater. Interfaces 2014, 6 (10), 7806.
  • Mishra, Y. K. ; Kaps, S. ; Schuchardt, A. ; Paulowicz, I. ; Jin, X. ; Gedamu, D. ; Freitag, S. ; Claus, M. ; Wille, S. ; Kovalev, A. ; Gorb, S. N. ; Adelung, R. Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from inter penetrating nanostructures by a simple fla10me transport approach. Part. Part. Syst. Charact. 2013, 30 (9), 775.
  • Zhang, Y. ; Ram, M. K. ; Stefanakos, E. K. ; Goswami, D. Y. Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 2012 , 624520.
  • Ghazi, M. ; Izadifard, M. ; Ghodsi, F. ; Yuonesi, M. Studying Mn-and Ni-doped ZnO thin films synthesized by the sol–gel method. J. Supercond. Novel Magn. 2012, 25 (1), 101.
  • Caoa, J. ; Wu, J. Strain effects in low-dimensional transition metal oxides. Mater. Sci. Eng. 2011, R71 , 35.
  • Modeshia, D. R. ; Dunnill, C. W. ; Suzuki, Y. ; Al-Ghamdi, A. A. ; El-Mossalamy, E. H. ; Obaid, A. Y. ; Basahel, S. N. ; Alyoubi, A. O. ; Parkin, I. P. Control of ZnO nanostructures via vapor transport. Chem. Vapor Depos. 2012, 18 (10–12), 282.
  • Vijayalakshmi, S. ; Venkataraj, S. ; Subramanian, M. ; Jayavel, R. Physical properties of zinc doped tin oxide films prepared by spray pyrolysis technique. J. Phys. D: Appl. Phys. 2008, 41 , 035505.
  • Warzecha, M. ; Köhl, D. ; Wuttig, M. ; Hüpkes, J. Ion beam assisted sputter deposition of ZnO for silicon thin-film solar cells. J. Phys D: Appl. Phys 2014, 47 (10), 105202.
  • Ghosh, P. ; Sharma, A. K. Growth and optical characterization of diamond-shaped zinc oxide nanostructures by pulsed laser deposition. Appl. Phys. A 2014, 115 (1), 235.
  • Jayatissa, A. H. ; Soleimanpour, A. M. ; Hao, Y. Manufacturing of multifunctional nanocrystalline ZnO thin films. Adv. Mater. Res. 2012, 383–390 , 4073.
  • Singh, T. ; Pandya, D. K. ; Singh, R. Template assisted growth of zinc oxide-based nanowires by electrochemical deposition. J. Nano Electron. Phys. 2011, 3 (1), 146.
  • Hu, J. Q. ; Bando, Y. Growth and optical properties of single-crystal tubular ZnO whiskers. Appl. Phys. Lett. 2003, 82 , 1401.
  • Wahab, R. ; Ansari, Z. A. ; Ansari, S. G. ; Kim, Y. S. ; Hwang, I. H. ; Kim, D. H. ; Mussarat, J. ; Al-Khedhairy, A. A. ; Siddiqi, M. A. ; Shin, H. S. Hydrogen storage properties of heterostructured zinc oxide nanostructures. J. Nano Eng. Nanomanuf. 2011, 1 (2), 188.
  • Khanlary, M. R. ; Vahedi, V. ; Reyhani, A. Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures. Molecules 2012, 17 (5), 5021.
  • Nasi, L. ; Calestani, D. ; Fabbri, F. ; Ferro, P. ; Besagni, T. ; Fedeli, P. ; Licci, F. ; Mosca, R. Mesoporous single-crystal ZnO nanobelts: Supported preparation and patterning. Nanoscale 2013, 5 , 1060.
  • Huang, X. ; Shao, L. ; She, G. W. ; Wang, M. ; Chen, S. ; Meng, X. M. Catalyst-free synthesis of single crystalline ZnO nanonails with ultra-thin caps. CrystEngComm. 2012, 14 , 8330.
  • Wahab, R. ; Kim, Y. S. ; Shin, H. S. Fabrication, characterization and growth mechanism of heterostructured zinc oxide nanostructures via solution method. Curr. Appl. Phys. 2011, 11 (3), 334.
  • Yoon, S. ; Lim, J. H. ; Yoo, B. Oxygen readsorption of a single ZnO nanobridge by joule heating under ultraviolet illumination. Appl. Phys. Express 2012, 5 (10), 105003.
  • Gurav, K. V. ; Gang, M. G. ; Shin, S. W. ; Patil, U. M. ; Deshmukh, P. R. ; Agawane, G. L. ; Suryawanshi, M. P. ; Pawar, S. M. ; Patil, P. S. ; Lokhande, C. D. ; Kim, J. H. Gas sensing properties of hydrothermally grown ZnO nanorods with different aspect ratios. Sensors Actuators B: Chem. 2014, 190 , 439.
  • Segets, D. ; Gradl, J. ; Taylor, R. K. ; Vassilev, V. ; Peukert, W. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility, and surface energy. ACS Nano 2009, 3 , 1703.
  • Regulska, E. ; Bruś, D. M. ; Karpińska, J. Photocatalytic decolourization of direct yellow 9 on titanium and zinc oxides. Int. J. Photoenergy 2013, 2013 , 975356.
  • Wahab, R. ; Hwang, I. H. ; Kim, Y. S. ; Musarrat, J. ; Siddiqui, M. A. ; Seo, H. K. ; Tripathy, S. K. ; Shin, H. S. Non-hydrolytic synthesis and photocatalytic studies of ZnO nanoparticles. Chem. Eng. J. 2011, 175 (15), 450.
  • Wahab, R. ; Hwang, I. H. ; Kim, Y. S. ; Shin, H. S. Photocatalytic activity of zinc oxide micro-flowers synthesized via solution method. Chem. Eng. J. 2011, 168 (15), 359.
  • Chen, T. ; Zheng, Y. ; Lin, J. M. ; Chen, G. Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 , 997.
  • Wahab, R. ; Khan, F. ; Lutfullah, M. ; Singh, R. B. ; Kaushik, N. K. ; Ahmad, J. ; Siddiqui, M. A. ; Saquib, Q. ; Ali, B. A. ; Khan, S. T. ; Musarrat, J. ; Al-Khedhairy, A. A. Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Phys. E 2015, 69 , 101.
  • Pardeshi, S. K. ; Patil. A. B. Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J. Mol. Catal. A: Chem 2009, 308 , 32.
  • Kansal, S. K. ; Singh, M. ; Sud, D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater. 2007, 141 , 581.
  • International Conference on Harmonisation, Harmonized Tripartity Guideline, Validation of Analytical Procedures November 2005. Text & Methodology Q2(R1). Available at www.ich.Org.
  • Baghbamidi, S. E. ; Beitollahi, H. ; Karimi-Maleh, H. ; Soltani-Nejad, S. ; Nejad, V. S. ; Roodsaz, S. Modified carbon nanotube paste electrode for voltammetric determination of carbi dopa, folic acid, and tryptophan. J. Anal. Methods Chem. 2012, 2012 , 305872.
  • Yáñez-Sedeño, P. ; Pingarrón, J. M. ; Riu, J. ; Rius, F. X. Electrochemical sensing based on carbon nanotubes. Trends Anal. Chem. 2010, 29 (9), 939.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.