186
Views
1
CrossRef citations to date
0
Altmetric
Articles

Preparation of graphene-nickel nanoparticles hybrid by spray pyrolysis using nickel oleate precursor and its application as a ferrofluid

, , , &
Pages 558-564 | Received 16 Jul 2015, Accepted 01 May 2016, Published online: 05 Aug 2016

References

  • Akhavan, O. ; Ghaderi, E. ; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 2012, 6 , 2904–2916.
  • Shao, Y. ; El-Kady, MF. ; Wang, L. J. ; Zhang, Q. ; Li, Y. ; Wang, H. ; Mousavi, M. F. ; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44 , 3639–3665.
  • Xu, X. ; Pereira, L. F. ; Wang, Y. ; Wu, J. ; Zhang, K. ; Zhao, X. ; Bae, S. ; Bui, C. T. ; Xie, R. ; Thong, J. T. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014, 5 (44), 3639–3665.
  • Chen, Y. ; Zhang, B. ; Liu, G. ; Zhuang, X. ; Kang, E. Graphene and its derivatives: switching ON and OFF. Chem. Soc. Rev. 2012, 41 , 4688–4707.
  • Morales-Narvaez, E. ; Merkoci, A. Graphene oxide as an optical biosensing platform. Adv. Mater. 2012, 24 , 3298–3308.
  • Ng, A. M. ; Lim, C. T. ; Low, H. Y. ; Loh, K. P. Highly sensitive reduced graphene oxide microelectrode array sensor. Biosens. Bioelectron. 2015, 65 , 265–273.
  • Song, Y. ; Li, X. ; Mackin, C. ; Zhang, X. ; Fang, W. ; Palacios, T. ; Zhu, H. ; Kong, J. Role of interfacial oxide in high-efficiency graphene–silicon schottky barrier solar cells. Nano Lett. 2015, 15 (3), 2104–2110.
  • Wang, C. ; Wang, X. ; Yang, Y. ; Kushima, A. ; Chen, J. ; Huang, Y. ; Li, J. Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett. 2015, 15 (3), 1796–1802.
  • Zhang, J. ; Xu, Y. ; Cui, L. ; Fu, A. ; Yang, W. ; Barrow, C. ; Liu, J. Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π-π stacking interactions. Compos. A 2015, 71 , 1–8.
  • Jung, Y. U. ; Park, K-W. ; Hur, S-T. ; Choi, S-W. ; Kang, S. J. High-transmittance liquid-crystal displays using graphene conducting layers. Liq. Cryst. 2014, 41 (1), 101–105.
  • Berinskii, I. ; Indeitsev, D. ; Morozov, N. ; Skubov, D. Y. ; Shtukin, L. Differential graphene resonator as a mass detector. Mech. Solids 2015, 50 (2), 127–134.
  • Wang, H. ; Sanchez Casalongue, H. ; Liang, Y. Y. ; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132 , 7472–7477.
  • Muralidharan, M. ; Seema, A. ; Saj Mohan, M. ; Dayas, K. ; Sunny, E. Tween 80 modified graphene with improved processability for the fabrication of supercapacitors. Mater. Manuf. Processes 2013, 28 (11), 1253–1259.
  • Ma, X. ; Li, Y. ; Wen, Z. ; Gao, F. ; Liang, C. ; Che, R. Ultrathin β-Ni (OH)2 Nanoplates vertically grown on nickel-coated carbon nanotubes as high-performance pseudocapacitor electrode materials. ACS Appl. Mater. Interfaces 2015, 7 (1), 974–979.
  • Khadempir, S. ; Ahmadpour, A. ; Mosavian, M. T. H. ; Ashraf, N. ; Bamoharram, F. F. ; Mitchell, S. G. ; Jesús, M. A polyoxometalate-assisted approach for synthesis of Pd nanoparticles on graphene nanosheets: synergistic behaviour for enhanced electrocatalytic activity. RSC Adv. 2015, 5 (31), 24319–24326.
  • Giovannetti, G. ; Khomyakov, P. ; Brocks, G. ; Karpan, V. ; Van den Brink, J. ; Kelly, P. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101 (2), 026803.
  • Karpan, V. ; Giovannetti, G. ; Khomyakov, P. ; Talanana, M. ; Starikov, A. ; Zwierzycki, M. ; Van Den Brink, J. ; Brocks, G. ; Kelly, P. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99 (17), 176602.
  • Xu, Z. ; Buehler, M. J. Interface structure and mechanics between graphene and metal substrates: a first-principles study. J. Phys. Condens. Matter. 2010, 22 (48), 485301.
  • Jiles, D. Introduction to Magnetism and Magnetic Materials ; Chapman and Hall Publishers: London/New York , 1991.
  • Lu, A. ; Salabas, E. ; Schuth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46 (8), 1222–1244.
  • Zhu, X. ; Xie, T. ; Mo, Z. ; Zhao, G. ; Zhang, C. ; Guo, R. Fabrication of polyaniline/graphene/Tb3+ conductive composite material. Mater. Manuf. Processes 2014, 30 , 335–339.
  • Wang, D. H. ; Kou, R. ; Choi, D. W. ; Yang, Z. G. ; Nie, Z. M. ; Li, J. ; Saraf, L. V. ; Hu, D. H. ; Zhang, J. G. ; Graff, G. L. ; Liu, J. ; Pope, M. A. ; Aksay, I. A. Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electro-chemical energy storage. ACS Nano 2010, 4 , 1587–1595.
  • Lu, G. H. ; Mao, S. ; Park, S. ; Ruoff, R. S. ; Chen, J. H. F. noncovalent decoration of graphene oxide sheets with nano-crystals. Nano Res. 2009, 2 , 192–200.
  • Shi, Y. ; Wang, D. ; Zhang, J. ; Zhang, P. ; Shi, X. ; Hao, Y. Synthesis of multilayer graphene films on copper by modified chemical vapor depositon. Mater. Manuf. Processes 2014, 30 , 711–716.
  • Ayán-Varela, M. ; Paredes, J. I. ; Guardia, L. ; Villar-Rodil, S. ; Munuera, J. M. ; Díaz-González, M. ; Fernández-Sánchez, C. ; Martinez-Alonso, A. ; Tascon, J. M. Achieving extremely concentrated aqueous dispersions of graphene flakes and catalytically efficient graphene-metal nanoparticle hybrids with flavin mononucleotide as a high-performance stabilizer. ACS Appl. Mater. Interfaces 2015, 7 (19), 10293–10307.
  • Wang, H. ; Robinson, J. T. ; Diankov, G. ; Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132 , 3270–3271.
  • Guo, S. ; Wen, D. ; Zhai, Y. ; Dong, S. ; Wang, E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot,rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4 (7), 3959–3968.
  • Liang, Y. ; Li, Y. ; Wang, H. ; Zhou, J. ; Wang, J. ; Regier, T. ; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10 , 780–786.
  • Yoonessi, M. ; Scheiman, D. A. ; Dittler, M. ; Peck, J. A. ; Ilavsky, J. ; Gaier, J. R. ; Meador, M. A. High-temperature multifunctional magnetoactive nickel graphene polyimide nanocomposites. Polymer 2013, 54 , 2776–2784.
  • Kong, B. ; Geng, J. ; Jung, H. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 16 , 2174–2176.
  • Choi, H. ; Shim, M. ; Bangsaruntip, S. ; Dai, H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J. Am. Chem. Soc. 2002, 124 (31), 9058–9059.
  • Bard, A. ; Parsons, R. Standard Potentials in Aqueous Solution ; Jordan J. Marcel Dekker: New York , 1985.
  • Cong, H. ; He, J. ; Lu, Y. ; Yu, S. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small 2010, 6 , 169–173.
  • Shen, J. ; Hu, Y. ; Shi, M. ; Li, N. ; Ma, H. ; Ye, M. One step synthesis of graphene oxide−magnetic nanoparticle composite. J. Phys. Chem. C 2010, 114 , 1498–1503.
  • Xu, C. , Wang, X. , and Zhu, J. Graphene−metal particle nanocomposites. J. Phys. Chem. C 2008, 112 (50), 19841–19845.
  • Rashidi, A. ; Akbarnejad, M. ; Khodadadi, A. ; Mortazavi, Y. ; Ahmadpourd, A. Single-wall carbon nanotubes synthesized using organic additives to Co–Mo catalysts supported on nanoporous MgO. Nanotech 2007, 18 (31), 315605.
  • Malard, L. ; Pimenta, M. ; Dresselhaus, G. ; Dresselhaus, M. Raman spectroscopy in graphene. Phys. Rep. 2009, 473 (5), 51–87.
  • Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143 , 47–57.
  • Berciaud, S. ; Ryu, S. ; Brus, L. E. ; Heinz, T. F. Probing the intrinsic properties of exfoliated graphene: raman spectroscopy of free-standing monolayers. Nano Lett. 2008, 9 (1), 346–352.
  • Dato, A. ; Radmilovic, V. ; Lee, Z. ; Phillips, J. ; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8 , 2012–2016.
  • Malesevic, A. ; Vitchev, R. ; Schouteden, K. ; Volodin, A. ; Zhang, L. ; Tendeloo, G. V. ; Vanhulsel, A. ; Haesendonck, C. V. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotech. 2008, 19 , 305604.
  • Calizo, I. ; Bejenari, I. ; Rahman, M. ; Liu, G. ; Balandin, A. A. Ultraviolet Raman microscopy of single and multilayer graphene. J. Appl. Phys. 2009, 106 (4), 043509.
  • Baraton, L. ; He, Z. ; Lee, C. ; Cojocaru, C. ; Châtelet, M. ; Maurice, J-L. ; Lee, Y. ; Pribat, D. On the mechanisms of precipitation of graphene on nickel thin films. EPL Europhys. Lett. 2011, 96 (4), 46003.
  • Cheng, H-C. ; Wu, C-H. ; Chen, W-H. Low-temperature thermal conductivity of short single-walled carbon nanotubes using a modified nosé-hoover thermostat. Nanosc. Microsc. Therm. 2012, 16 (4), 242–259.
  • Yu, W. ; France, D. M. ; Routbort, J. L. ; Choi, S. U. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat. Transfer. Eng. 2008, 29 (5), 432–460.
  • Meibodi, M. E. ; Vafaie-Sefti, M. ; Rashidi, A. M. ; Amrollahi, A. ; Tabasi, M. ; Kalal, H. S. The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids. Int. Commun. Heat. Mass. Transfer 2010, 37 (3), 319–323.
  • Lu, H-F. ; Kuo, W-S. ; Ko, T-H. Microstructures and thermal conductivities of carbon nanotube/graphite nanosheet compacts. Nanosc. Microsc. Therm. 2011, 15 (4), 209–219.
  • Kong, L. ; Lu, X. ; Zhang, W. Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J. Solid. State. Chem. 2008, 181 (3), 628–636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.