259
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Microbiological synthesis of zinc sulfide nanoparticles using Desulfovibrio desulfuricans

, , , , &
Pages 96-102 | Received 28 Oct 2015, Accepted 20 Jul 2016, Published online: 13 Mar 2018

References

  • Baishya, U.; Sarkar, D. Structural, optical and electrical properties of spherical shaped wurtzite ZnS nanoparticles dispersed in polyvinyl alcohol matrix. Indian J. Phys. 2013, 87(8), 763–766.
  • Pandey, N.; Srivastava, R. K.; Prakash, S. G. Study of photocurrent and dark current in ZnS nano particles prepared by precipitation method. Adv. Nanomater. Nanotechnol. 2013, 143, 125–132.
  • Thottoli, A. K.; Unni, A. K. A. Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. J. Nanostruct. Chem. 2013, 3, 56–67.
  • Taherian, M.; Sabbagh Alvani, A. A.; Shokrgozar, M. A. Surface-treated biocompatible ZnS quantum dots: Synthesis, photo-physical and microstructural properties. Electron. Mater. Lett. 2014, 10(2): 393–400.
  • Sahoo, A. K.; Srivastava, S. K.; Raul, P. K. Graphene nanocomposites of CdS and ZnS in effective water purification. J. Nanopart Res. 2014, 16, 2473–2489.
  • Chandran, A.; George, K. C. Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart Res. 2014, 16, 2238–2254.
  • Farid, H.; Abdel Rafea, M.; El-Wahidy, E. F. Preparation and characterization of ZnS nanocrystalline thin films by low cost dip technique. J. Mater. Sci.: Mater. Electron. 2014, 25, 2017–2023.
  • Goswami, N.; Sen, P. UV–Visible spectroscopic study of ZnS nanostructures synthesized by a novel micellar method. J. Mater. Sci. 2012, 47, 2903–2909.
  • Mandal, D.; Bolander, M. E.; Mukhopadhyay, D. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microb. Biotechnol. 2006, 69(5), 485–492.
  • Arun, G.; Eyini, M.; Gunasekaran, P. Green synthesis of silver nanoparticles using the mushroom fungus schizophyllum commune and its biomedical applications. Biotechnol. Bioprocess Eng. 2014, 19, 1083–1090.
  • Reese, R. N.; Winge, D. R. Sulfide stabilization of the cadmium–γ-glutamyl peptide complex of Schizosaccharomyces pombe. J. Biol. Chem. 1988, 263, 12832–12835.
  • Sweeney, R. Y.; Mao, C.; Gao, X.; Burt, J. L.; Belcher, A. M.; Georgiou, G.; Iverson, B. L. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 2004, 11, 1553–1559.
  • Senapati, U. S.; Sarkar, D. Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J. Phys. 2014, 88(6), 557–562.
  • Rajeshkumar, S.; Ponnanikajamideen, M.; Malarkodi, C.; Malini, M.; Annadurai, G. Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J. Nanostruct. Chem. 2014, 4, 96–102.
  • Bai, H.; Zhang, Z.; Guo, Y.; Jia, W. Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized rhodobacter sphaeroides. Nanoscale Res Lett. 2009, 4, 717–723.
  • Kowshik, M.; Deshmukh, N.; Vogel, W. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 2002, 78(5), 583–585.
  • Ahmad, A.; Mukherjee, P.; Mandal, D. Enzyme mediated extracellular synthesis of CdS naoparticles by the fungus, fusarium oxysporum. J. Am. Chem. Soc. 2002, 124(41), 12108–12109.
  • Liu, X.; Wang, J.; Yue, L.; Xin, B. Biosynthesis of high-purity c-MnS nanoparticle by newly isolated Clostridiaceae sp. and its properties characterization. Bioprocess. Biosyst. Eng. 2015, 38, 219–227.
  • Gong, J.; Zhang, Z.; Bai, H.; Yang, G. Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Sci. China Ser. E: Technol. Sci. 2007, 50(1), 1–6.
  • Holmes, J. D.; Richardson, D. J.; Saed, S.; Evans-Gowing, R.; Russell, D. A.; Sodeau, J. R. Cadmium-speciic formation of metal sulide “Q-particles” by Klebsiella pneumonia. Microbiology 1997, 143(8), 2521–2530.
  • Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg. Chem. Appl. 2014, 347167, 1–10.
  • Bai, H.-J.; Zhang, Z.-M.; Gong, J. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol. Lett. 2006, 28, 1135–1139.
  • Gu, F. Study on synthesis and optical properties of semiconductor nanomaterials. Doctoral Dissertation, Shandong University, Jinan, China, 2007.
  • Peck, H. D.; Van Beeumen, J. R.; Le Gall, J. Biochemistry of dissimilatory sulphate reduction. Phil. Trans. R. Soc. Lond. B 1982, 298, 443–466.
  • Kumar, M.; Upreti, R. K. Impact of lead stress and adaptationin Escherichia coli. Ecotoxicol. Environ. Saf. 2000, 47(3), 246–252.
  • Tornabene, T. G.; Peterson, S. L. Interaction of lead and bacterial lipids. Appl. Microbiol. 1975, 29, 680–684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.