347
Views
15
CrossRef citations to date
0
Altmetric
Articles

Hibiscus sabdariffa L. leaf extract mediated green synthesis of silver nanoparticles and its use in catalytic reduction of 4-nitrophenol

&
Pages 788-793 | Received 25 Apr 2015, Accepted 09 Jul 2016, Published online: 18 Aug 2016

References

  • Chytil, S.; Glomm, W. R.; Kvande, I.; Zhao, T.; Walmsley, J. C.; Blekkan, E. A. Platinum incorporated into the SBA-15 mesostructure via deposition-precipitation method: Pt nanoparticle size estimation and catalytic testing. Topics Catal. 2007, 45, 93–99.
  • Jacinto, M. J.; Kiyohara, P. K.; Masunaga, S. H.; Jardim, R. F.; Rossi, L. M. Recoverable rhodium nanoparticles: Synthesis, characterization and catalytic performance in hydrogenation reactions. Appl. Catal. A: Gen. 2008, 338, 52–57.
  • Shiju, N. R.; Guliants, V. V. Recent developments in catalysis using nanostructured materials. Appl. Catal. A: Gen. 2009, 356, 1–17.
  • Alonso, F.; Riente, P.; Yus, M. Transfer hydrogenation of olefins catalysed by nickel nanoparticles. Tetrahedron 2009, 65, 10637–10643.
  • Balu, A. M.; Campelo, J. M.; Luque, R.; Romero, A. A. One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Org. Biomol. Chem. 2010, 8, 2845–2849.
  • Masoomi, M. Y.; Morsali, A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coordination Chem. Rev. 2012, 256, 2921–2943. doi: 10.1016/j.ccr.2012.05.032
  • Masoomi, M. Y.; Beheshti, S.; Morsali, A. Shape control of Zn(II) metal−organic frameworks by modulation synthesis and their morphology-dependent catalytic performance. Cryst Growth Des. 2015, 15, 2533–2538.
  • Phillips, M. A.; Gran, M. L.; Peppas, N. A. Targeted nanodelivery of drugs and diagnostics. Nano Today 2010, 5, 143–159.
  • Minko, T.; Rodriguez-Rodriguez, L.; Pozharov, V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv. Drug Del. Rev. 2013, 65, 1880–1895.
  • Safari, J.; Zarnegar, Z. Advanced drug delivery systems: Nanotechnology of health design A review. J. Saudi Chem. Soc. 2014, 18, 85–99.
  • Krishnaraj, C.; Jagan, E. G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P. T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B, Biointerfaces 2010, 76, 50–56.
  • Tamuly, C.; Hazarika, M.; Bordoloi, M.; Das, M. R. Photocatalytic activity of Ag nanoparticles synthesized by using Piper pedicellatum C.DC fruits. Mater. Lett. 2013, 102–103, 1–4.
  • Bagheri, M.; Mahjoub, A. R.; Khodadadi, A. A.; Mortazavi, Y. Fast photocatalytic degradation of congo red using CoO-doped β-Ga 2 O 3 nanostructures. RSC Adv. 2014, 4, 33262. doi: 10.1039/C4RA04668D
  • Masoomi, M. Y.; Morsali, A.; Junk, P. C. Rapid mechanochemical synthesis of two new Cd(II)-based metal–organic frameworks with high removal efficiency of Congo red. CrystEngComm. 2015, 17, 686–692. doi: 10.1039/C4CE01783H
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261.
  • Shin, S.; Song, J. Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon. J. Hazard. Mater. 2011, 194, 385–392.
  • Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668.
  • Zhu, W.; Han, Y.; An, L. Silver nanoparticles synthesized from mesoporous Ag/SBA-15 composites. Microporous Mesoporous Mater. 2005, 80, 221–226.
  • Hong, H. K.; Gong, M. S.; Park, C. K. A facile preparation of silver nanocolloids by hydrogen reduction of a silver alkylcarbamate complex. Bull. Korean Chem. Soc. 2009, 30, 2669–2674.
  • Philip, D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 2009, 73, 374–381.
  • Sanchez-mendieta, V.; Vilchis-nestor, A. R. Green Synthesis of Noble Metal (Au, Ag, Pt) Nanoparticles, Assisted by Plant-Extracts, Noble Metals; Su, DY-H, ed.; Intech, 2012. doi: 10.5772/34335. Available at http://www.intechopen.com/books/noble-metals/green-synthesis-of-noble-metal-au-ag-pt-nanoparticles-assisted-by-plant-extracts
  • Tamuly, C.; Hazarika, M.; Borah, S. C.; Das, M. R.; Boruah, M. P. In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach. Colloids Surfaces B, Biointerfaces 2013, 102, 627–634.
  • Rawani, A.; Ghosh, A.; Chandra, G. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica 2013, 128, 613–622.
  • Rahimi-Nasrabadi, M.; Pourmortazavi, S. M.; Shandiz, S. A. S.; Ahmadi, F.; Batooli, H. Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat. Prod. Res. 2014, 1–6.
  • Du, C. T.; Francis, F. J. Anthocyanins of Roselle (Hibiscus sabdariffa, L.). J. Food Sci. 1973, 38, 810–812.
  • Faraji, M. H.; Tarkhani, A. H. H. The effect of sour tea (Hibiscus sabdariffa) on essential hypertension. J. Ethnopharmacol. 1999, 65, 231–236.
  • Tsai, P.; Mcintosh, J.; Pearce, P.; Camden, B.; Jordan, B. R. Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract. Food Res. Int. 2002, 35, 351–356.
  • Ali, B. H.; Al Wabel, N.; Blunden, G. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review. Phytother. Res. 2005, 19, 369–375.
  • Mohd-Esa, N.; Hern, F. S.; Ismail, A.; Yee, C. L. Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chem. 2010, 122, 1055–1060.
  • Mozaffari-Khosravi, H.; Jalali-Khanabadi, B.; Afkhami-Ardekani, M.; Fatehi, F.; Noori-Shadkam, M. The effects of sour tea (Hibiscus sabdariffa) on hypertension in patients with type II diabetes. J. Hum. Hypertens. 2009, 23, 48–54.
  • Mohamed, R.; Fernández, J.; Pineda, M.; Aguilar, M. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol. J. Food Sci. 2007, 72, S207–S211.
  • Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L. - A phytochemical and pharmacological review. Food Chem. 2014, 165, 424–443.
  • Scholl, J. A.; Koh, A. L.; Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421–427.
  • Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. doi: 10.1002/andp.19083300302
  • Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819.
  • Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. doi: 10.1038/nmeth.2089
  • Waseda, Y.; Matsubara, E.; Shinoda, K. X-Ray Diffraction Crystallography; Springer: Berlin, 2011.
  • Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2011, 79, 1461–1465. doi: 10.1016/j.saa.2011.05.001
  • Balavandy, S. K.; Shameli, K.; Biak, D. R. B. A.; Abidin, Z. Z. Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem. Central J. 2014, 8, 11.
  • Naraginti, S.; Sivakumar, A. Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 128, 357–362. doi: 10.1016/j.saa.2014.02.083
  • Anastas, T. P.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
  • Tian, M.; Bakovic, L.; Chen, A. Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics. Electrochim. Acta. 2007, 52, 6517–6524.
  • Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C 2010, 114, 8814–8820. doi: 10.1021/jp101125j
  • Wang, M.; Tian, D.; Tian, P.; Yuan, L. Synthesis of micron-SiO2@nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl. Surface Sci. 2013, 283, 389–395. doi: 10.1016/j.apsusc.2013.06.120
  • Blosi, M.; Albonetti, S.; Costa, A. L.; Sangiorgi, N.; Sanson, A. Easily scalable synthesis of Ni nanosols suitable for the hydrogenation of 4-nitrophenol to p-aminophenol under mild condition. Chem. Eng. J. 2013, 215–216, 616–625.
  • Wang, M.; Tian, D.; Tian, P.; Yuan, L. Synthesis of micron-SiO2@nano-Ag particles and their catalytic performance in 4-nitrophenol reduction. Appl. Surface Sci. 2013, 283, 389–395.
  • Urkude, K.; Thakare, S. R.; Gawande, S. An energy efficient photocatalytic reduction of 4-nitrophenol. J. Environ. Chem. Eng. 2014, 2, 759–764. doi: 10.1016/j.jece.2013.11.019
  • Abdel-Fattah, T. M.; Wixtrom, A. Catalytic reduction of 4-nitrophenol using gold nanoparticles supported on carbon nanotubes. ECS J. Solid State Sci. Technol. 2014, 3, M18–M20. doi: 10.1149/2.023404jss
  • Tian, Y.; Liu, Y.; Pang, F.; Wang, F.; Zhang, X. Green synthesis of nanostructed Ni-reduced graphene oxide hybrids and their application for catalytic reduction of 4-nitrophenol. Colloids Surfaces A: Physicochem. Eng. Aspects 2015, 464, 96–103.
  • Deng, J. P.; Shih, W. C.; Mou, C. Y. Electron transfer-induced hydrogenation of anthracene catalyzed by gold and silver nanoparticles. J. Phys. Chem. C 2007, 111, 9723–9728.
  • Baxter, R. J.; Hu, P. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J. Chem. Phys. 2002, 116, 4379.
  • Atkins, P. W.; de Paula, J. Physical Chemistry, 8th ed.; Oxford University Press: New Delhi, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.