456
Views
22
CrossRef citations to date
0
Altmetric
Articles

Effect of synthesis parameters on the particle size of the zero valent iron particles

&
Pages 1033-1043 | Received 14 Jan 2016, Accepted 30 Jul 2016, Published online: 06 Mar 2017

References

  • Li, L.; Fan, M.; Brown, R. C.; Leeuwen, J. V.; Wang, J.; Wang, W.; Song, Y.; Zhang, P. Synthesis properties, and environmental applications of nano scale iron-based materials: a review. Crit. Rev. Environ. Sci. Technol. 2006, 36, 405–431.
  • Yirsaw, B. D.; Megharaj, M.; Chen, Z.; Naidu, R. Environmental application and ecological significance of nano-zero valent iron. J. Environ. Sci. 2015, doi: 10.1016/j.jes.2015.07.016. 2016, 44, 88–98.
  • Crane, R. A.; Scott, T. B. Nano scale zero valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 2012, 211–212, 112–125.
  • Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyacı, E.; Eroglu, A. E.; Scott, T. B.; Hallam, K. R. Green synthesis of iron nano particles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011, 172, 258–266.
  • Débora, V.; Da Silva, F. L. M.; Jardim, W. F. Chemical reduction of hexavalent chromium and its immobilisation underbatch conditions using a slurry reactor. Water, Air, Soil Pollut. 2009, 203, 305–315.
  • Oropeza, S.; Corea, M; Gomez-Yanez, C.; Cruz-Rivera, C.; Navarro-Clemente, J. J. M. E. Zero-valent iron nano particles preparation. Mater. Res. Bull. 2012, 47, 1478–1485.
  • Kura, H.; Takahashi, M.; Ogawa, T. Synthesis of monodisperse iron nanoparticles with a high saturation magnetization using an Fe(CO)x-Oleylamine reacted precursor. J. Phys. Chem. C. 2010, 114, 5835–5838.
  • Tietze, R.; Zaloga, J.; Unterweger, H.; Layer, S.; Friedrich, R. P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy review. Biochem. Biophys. Res. Commun. 2015, 468, 463–470.
  • Wang, L.; Yang, J.; Li, Y.; Lv, J.; Zou, J. Removal of chlorpheniramine in a nanoscale zero-valent iron induced heterogeneous Fenton system: influencing factors and degradation intermediates. Chem. Eng. J. 2016, 284, 1058–1067.
  • Yu, R. F.; Chen, H. W.; Cheng, W. P.; Lin, Y. J.; Huang, C. L. Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azo-dye textile wastewater. J. Taiwan. Inst. Chem. Eng. 2014, 45, 947–954.
  • Busch, J.; Meißner, T.; Potthoff, A.; Bleyl, S.; Georgi, A.; Mackenzie, K.; Trabitzsch, R.; Werban, U.; Oswald, S. E. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater. J. Contam. Hydrol. 2015, 181, 59–68.
  • Fu, R.; Yang, Y.; Xu, Z.; Zhang, X.; Guo, X.; Bi, D. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere. 2015, 138, 726–734.
  • Blowes, D.; Ptacek, W.; Benner, C. J; McraeChe, S. G.; Bennett, W. T.; Puls, R. W. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000, 45, 123–137.
  • Zhang, W. X. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323–332.
  • Wen, Z.; Zhang, Y.; Dai, C. Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids and Surfaces A: Physico Chem. Eng. Aspects. 2014, 457, 433–440.
  • Chang, J.; Woo, H.; SooKo, M.; Lee, J.; Seong-TaekYun, S. L.; Lee, S. Targeted removal of trichlorophenol in water by oleic acid-coated nanoscale palladium/zero-valent iron alginate beads. J. Hazard. Mater. 2015, 293, 30–36.
  • Jamei, M. R.; Khosravi, M. R.; Anvaripour, B. A novel ultrasound assisted method in synthesis of NZVI particles. Ultrason. Sonochem. 2014, 21, 226–233.
  • Singh, R.; Misra, V.; Pratap Singh, R. Removal of hexavalent chromium from contaminated ground water using zero-valent iron nanoparticles. Environ Monit Assess. 2012, 184, 3643–3651.
  • Prema, P.; Thangapandian, S.; Selvarani, M.; Subharanjani, S.; Amutha, C. Color removal efficiency of dyes using nano zero valent iron treatment. Toxicol. Environ. Chem. 2011, 93, 1908–1917.
  • Sanderson, P.; Delgado-Saborit, J. M.; Harrison, R. M. A review of chemical and physical characterisation of atmospheric metallic nanoparticles. Atmos. Environ. 2014, 94, 353–365.
  • Ingert, D.; Bre'chignac, C.; Houdy, P.; Lahmani, M. (Eds.). Nanomaterials and Nanochemistry. Springer-Verlag: New York, 2007; pp. 441–453.
  • Volokitin, Y.; Sinzig, J.; deJongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseev, I. I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621–623.
  • Smith, T. W.; Wychick, D. Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl. J. Phys. Chem. 1980, 84, 1621–1629.
  • La Mer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.
  • Guan, Z.; Shu, Y.; Ma, Y.; Wan, J. Factors affecting the physicochemical properties of the modified core/shell NH2–SiO2 NZVI nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2015, 482, 18–26.
  • Feng, H.; Dongye, Z. Manipulating the size and dispersibility of zero valent iron nanoparticles use of carboxymethylcellulose stabilizers. Environ. Sci. Technol. 2007, 41, 6216–6221.
  • Wang, C. B.; Zhang, W. X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154.
  • Goldstein, N.; Greenlee, F. L. Influence of synthesis parameters on iron nanoparticle size and zeta potential. J. Nanopart Res. 2012, 14, 760.
  • Li, X.; Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q. Size-controlled starch nanoparticles prepared by self-assembly with different gren surfactant: the effect of electrostatic repulsion or sterichindrance. Food Chem. 2016, 199, 356–363.
  • Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nano emulsifying drug delivery system. J Colloid Interface Sci. 2009, 330, 443–448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.