147
Views
17
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of pyridine-4-carboxylic acid-functionalized Fe3O4 nanoparticles as a magnetic catalyst for the synthesis of tetrahydrobenzo[b]pyran derivatives under solvent-free conditions

&
Pages 1004-1011 | Received 23 Jan 2016, Accepted 30 Jul 2016, Published online: 06 Mar 2017

References

  • Tiwari, A.; Mishra, A. K.; Kobayashi, H.; Turner, A. P. F. Intelligent Nanomaterials: Processes, Properties, and Applications; John Wiley & Sons, Inc.: New Jersey, 2012.
  • Dalaigh, C. O.; Corr, S. A.; Ko, Y. G.; and Connon, S. J. A magnetic nanoparticle supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Angew. Chem. Int. Ed. 2007, 46, 4329–4332.
  • Shi, F.; Tse, M. K.; Pohl, M. M.; Bruckner, A.; Zhang, S.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed. 2007, 46, 8866–8868.
  • Zhang, D. H.; Li, G. D.; Li, J. X.; Chen, J. S. One-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun. 2008, 29, 3414–3416.
  • Lu, A. H.; Salabas, E. L.; Schuth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.
  • Hu, B.; Pan, J.; Yu, H. L.; Liu, J. W.; Xu, J. H. Immobilization of serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem. 2009, 44, 1019–1024.
  • Bai, S.; Guo, Z.; Liu, W.; Sun, Y. Resolution of (±)-menthol by immobilized candida rugosa lipase on superparamagnetic nanoparticles. Food Chem. 2006, 96, 1–7.
  • Gill, C. S.; Price, B. A.; Jones, C. W. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. Catal J. 2007, 251, 145–152.
  • Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985.
  • Kainz, Q. M.; Reiser, O. Polymer and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Chem. Res. 2014, 47, 667–677.
  • Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Magnetically retrievable catalysts for asymmetric synthesis. Coord. Chem. Rev. 2014, 287, 137–156.
  • Zhu, J.; Bienayme, H. Multicomponent reactions; Wiley-VCH: Weinheim, 2005.
  • Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev. 2006, 106, 17–89.
  • Jimenez-Alonso, S.; Chavez, H.; Estevez-Braan, A.; Ravelo, A.; Feresin, G.; Tapia, A. An efficient synthesis of embelin derivatives through domino Knoevenagel hetero Diels–Alder reactions under microwave irradiation. Tetrahedron 2008, 64, 8938–8942.
  • Tejedor, D. F.; Tellado, G. Chemo-differentiating ABB′ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev. 2007, 36, 484–491.
  • Nefzi, A.; Ostresh, J. M.; Houghten, R. A. The current status of heterocyclic combinatorial libraries. Chem. Rev. 1997, 97, 449–472.
  • Thompson, L. A. Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. Curr. Opin. Chem. Biol. 2000, 4, 324–337.
  • Dömling, A. Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol. 2002, 6, 306–313.
  • Green, G. R.; Evans, J. M.; Vong, A. K.; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Pergamon Press, Oxford, 1995, 5, 469–500.
  • Andreani, L. L.; Lapi, E. On some new esters of coumarin-3-carboxylic acid with balsamic and bronchodilator action. Boll Chim Farm. 1960, 99, 583–586.
  • Zhang, Y. L.; Chen, B. Z.; Zheng, K. Q.; Xu, M. L.; Lei, X. H. Chemical Abstracts 1982, 96, 135383e.
  • Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem. 1993, 28, 517–520.
  • Witte, E. C.; Neubert, P.; Roesch, A. Chemical Abstracts 1986, 104, 224915f.
  • Shuklov, I. A.; Dubrovina, N. V.; Børner, A. Fluorinated alcohols as solvents, Cosolvents and additives in homogeneous catalysis. Synthesis 2007, 2925–2943.
  • Be´gue´, J. P.; Bonnet-Delpon, D.; Crousse, B. Fluorinated alcohols: a new medium for selective and clean reaction. Synlett. 2004, 18–29.
  • Westermaier, M.; Mayr, H. Electrophilic allylations and benzylations of indoles in neutral aqueous or alcoholic solutions. Org. Lett. 2006, 8, 4791–4794.
  • Ratnikov, M. O.; Tumanov, V. V.; Smit, W. A. Lewis acid catalyst free electrophilic alkylation of silicon-capped π donors in 1, 1, 1, 3, 3, 3-Hexafluoro-2-propanol. Angew. Chem. Int. Ed. 2008, 47, 9739–9742.
  • Westermaier, M.; Mayr, H. Regio and stereoselective ring opening reactions of epoxides with indoles and pyrroles in 2, 2, 2-Trifluoroethanol. Chem. Eur. J. 2008, 14, 1638–1647.
  • De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Solvent promoted and controlled aza-Michael reaction with aromatic amines. J. Org. Chem. 2009, 74, 6260–6265.
  • Wejrzanowski, T.; Pielaszek, R.; Opalin´ska, A.; Matysiak, H.; Lojkowski, W.; Kurzydlowski, K. J. Quantitative methods for nanopowders characterization. Appl. Surf. Sci. 2006, 253, 204–208.
  • Pielaszek, R. Analytical expression for diffraction line profile for polydispersive powders. J. Appl. Crystallogr. 2003, 1, 43–50.
  • NooriSadeh, F.; Maghsoodlou, M. T.; Hazeri, N.; Kangani, M. A facile and efficient synthesis of tetrahydrobenzo [b] pyrans using lactose as a green catalyst. Res Chem Intermed. 2014, DOI: 10.1007/s11164-014-1710-x.
  • Hazeri, N.; Maghsoodlou, M. T.; Mir, F.; Kangani, M.; Saravani, H.; Molashahi, E. An efficient one-pot three-component synthesis of tetrahydrobenzo [b] pyran and 3, 4-dihydropyrano [c] chromene derivatives using starch solution as catalyst. Chinese J Catal. 2014, 35, 391–395.
  • Abdollahi-Alibeik, M.; Nezampour, F. Synthesis of 4H-benzo [b] pyrans in the presence of sulfated MCM-41 nanoparticles as efficient and reusable solid acid catalyst. Reac Kinet Mech Cat. 2013, 108, 213–229.
  • Rostamnia, S.; Morsali, A. Size-controlled crystalline basic nanoporous coordination polymers of Zn 4 O (H 2 N-TA) 3: Catalytically study of IRMOF-3 as a suitable and green catalyst for selective synthesis of tetrahydro-chromenes. Inorg. Chim. Acta 2014, 411, 113–118.
  • Tahmassebi, D.; Bryson, J. A.; Binz, S. I. 1, 4-Diazabicyclo [2.2. 2] octane as an efficient catalyst for a clean, one-pot synthesis of tetrahydrobenzo [b] pyran derivatives via multicomponent reaction in aqueous media. Synth. Commun. 2011, 41, 2701–2711.
  • Aswin, K.; Mansoor, S. S.; Logaiya, K.; Sudhan, S. P. N.; Malik, V. S.; Ramadoss, H. Reusable silica-bonded S-sulfonic acid catalyst for three-component synthesis of 2-amino-5-oxo-5, 6, 7, 8-tetrahydro-4H-chromenes and 2-amino-4H-pyrans in aqueous ethanol. Res. Chem. Intermed. 2014, 40, 2583–2591.
  • Montazeri, N.; Noghani, T.; Ghorchibeigy, M.; Zoghi, R. Pentafluoropropionic acid: an efficient and metal-free catalyst for the one-pot synthesis of Tetrahydrobenzo [b] pyran derivatives. J. Chem. 2014, 2014, Article ID 596171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.