375
Views
0
CrossRef citations to date
0
Altmetric
Articles

A 3-Year Adaptation Study of Three Distinct Grapevine Cultivars under Midwestern Field Conditions

, , , &

Literature cited

  • Björkman, O., and B. Demming. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504.
  • Bota, J., J. Flexas, and H. Medrano. 2001. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 138:353–361.
  • Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003. Understanding plant responses to drought: From genes to the whole plant. Funct. Plant Biol. 30:239–264.
  • Chaves, M.M., O. Zarrouk, R. Francisco, M.J. Costa, T. Santos, P.A. Regalado, L.M. Rodrigues, and M.C. Lopes. 2010. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Appl. Biol. 105:661–676.
  • Chaves, M.M., T.P. Santos, and C.R. Souza. 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 150:237–252.
  • Chone, X., C. van Leeuwen, D. Dubourdieu, and J.P. Gaudillere. 2001. Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 87:477–483.
  • Cifre, J., J. Bota, and J.M. Escalona. 2005. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency?. Agr. Ecosyst. Environ. 106:59–170.
  • Correia, M.J., J.S Pereira, M.M. Chaves, M.L. Rodrigues, and C.A. Pacheco. 1995. ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants. Plant Cell Environ. 18:511–521.
  • Cuevas, E., P. Baeza, and J.R. Lissarrague. 2006. Variation in stomatal behaviour and gas exchange between mid-morning and mid-afternoon of north-south oriented grapevines (Vitis vinifera L. cv. Tempranillo) at different levels of soil water availability. Sci. Hort. 108:173–180.
  • Damour, G., T. Simonneau, H. Cochard, and L. Urban. 2010. An overview of models of stomatal conductance at the leaf level. Plant Cell Environ. 33:1419–1438.
  • Düring, H. 1976. Studies on the environmentally controlled stomatal transpiration in grape vines. I. Effects of light intensity and air humidity. Vitis 15:82–87.
  • Escalona, J.M., J. Flexas, J. Bota, and H. Medrano. 2003. Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions. Vitis 42:57–64.
  • Flexas, J., J.M. Escalona, and H. Medrano. 1998. Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust. J. Plant Physiol. 25:893–900.
  • Fraga, H., A.C. Malheiro, J. Moutinho-Pereira, and J.A. Santos. 2012. An overview of climate change impacts on European viticulture. Food Energy Secur. 1:94–110.
  • Gálvez, R., R. Callejas, G. Reginato, and M.C. Peppi. 2014. Irrigation schedule on table grapes by stem water potential and vapor pressure deficit allows to optimize water use. Ciência Téc. Vitiv. 29(2):60–70.
  • Goethem, D., S. De Smedt, R. Valcke, G. Potters, and R. Samson. 2013. Seasonal, diurnal and vertical variation of chlorophyll fluorescence on Phyllostachys humilis in Ireland. PLoS One 8(8):15.
  • Greer, D.H. 2012. Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions. AoB Plants 2012:pls009.
  • Greer, D.H., and C. Weston. 2010. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct. Plant Biol. 37:206–214.
  • Greer, D.H., and M.M. Weedon. 2013. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front. Plant Sci. 4:491.
  • Ha, C.V., M.A. Leyva-Gonzalez, Y. Osakabe, U.T. Tran, R. Nishiyama, Y. Watanabe, M. Tanaka, M. Seki, S. Yamaguchi, N.V. Dong, K. Yamaguchi-Shinozaki, K. Shinozaki, L. Herrera-Estrella, and L.S. Tran. 2014. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. U.S.A. 111:581–856.
  • Haeger, J.W., and K. Storchmann. 2006. Prices of American Pinot Noir wines: Climate, craftsmanship, critics. Agr. Econ. 35:67–78.
  • Hannah, L., P. Roehrdanz, M. Ikegami, A. Shepard, M. Shaw, G. Tabo, L. Zhi, P. Marquet, and R. Hijmans. 2013. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. U.S.A. 110(17):6907–6912.
  • Jones, G.V., M.A. White, R.C. Owen, and C. Storchmann. 2005. Climate change and global wine quality. Clim. Change 73:319–343.
  • Jones, H. 2004. What is water use efficiency?, p. 27–40. In M.A. Bacon (ed.). Water use efficiency in plant biology. CRC Press, Boca Raton, FL.
  • Kadir, S. 2006. Thermostability of photosynthesis of Vitis aestivalis and V. vinifera. J. Amer. Soc. Hort. Sci. 131:476–483.
  • Keller, M.M. 2010. Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust. J. Grape Wine Res. 16:56–69.
  • Lallanilla, M. 2013. Will global warming crush the wine industry? Live Science. 12 January 2016. <http://www.livescience.com/28577-wine-global-warming.html>
  • Lovisolo, C., I. Perrone, A. Carra, A. Ferrandion, J. Flexas, H. Medrano, and A. Schubert. 2010. Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: A physiological and molecular update. Funct. Plant Biol. 37:98–116.
  • Mishra, V., K.A. Cherkauer, and S. Shukla. 2010. Assessment of drought due to historic climate variability and projected future climate change in the midwestern United States. J. Hydrometeorol. 11:46–68.
  • Moriana, A., A. Villalobos, and E. Fereres. 2002. Stomatal and photosynthetic responses of olive (Olea europea L.) leaves to water deficits. Plant Cell Environ. 25:395–405.
  • Naor, A. 1998. Relations between leaf and stem water potentials and stomatal conductance in three field-grown woody species. J. Hort. Sci. Biotech. 73:431–436.
  • Naor, A., and R.L. Wample. 1994. Gas exchange and water relations of field-grown Concord (Vitis labruscana Bailey) grapevines. Am. J. Enol. Vitic. 45:333–337.
  • Nesterenko, T.V., A.A. Tikhomirov, and V.N. Shikhov. 2006. Onto-genetic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method. Photosynthetica 44:321–332.
  • Nishiyama, R., Y. Watanabe, M.A. Leyva-Gonzalez, C. Van Ha, Y. Fujita, M. Tanaka, M. Seki, K. Yamaguchi-Shinozaki, K. Shinozaki, L. Herrera-Estrella, and L.S. Tran. 2013. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proc. Natl. Acad. Sci. U.S.A. 110:4840–4845.
  • Nunez-Olivera, E., J. Martinez-Abaigar, and R. Tomas. 2006. Physiological effects of solar ultraviolet-B exclusion on two cultivars of Vitis vinifera L. from La Rioja, Spain. Am. J. Enol. Vitic. 57:441–448.
  • Oliveira, G., and J. Peñuelas. 2001. Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter. Aust. J. Plant Physiol. 28:471–480.
  • Osakabe, Y., N. Arinaga, T. Umezawa, S. Katsura, K. Nagamachi, H. Tanaka, H. Ohiraki, K. Yamada, S.U. Seo, M. Abo, and E. Yoshimura. 2013a. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25:609–624.
  • Osakabe, Y., K. Yamaguchi-Shinozaki, K. Shinozaki, and L.S. Phan Tran. 2013b. Sensing the environment: Key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64:445–458.
  • Poni, S., L. Marchiol, C. Intrieri, and G. Zerbi. 1993. Gas exchange response of grapevine leaves under fluctuating light. Vitis 32:137–143.
  • Pou, A., J. Flexas, M.M. Alsina, J. Bota, C. Carambula, F. De Herralde, J. Galmés, C. Lovisolo, M. Jiménez, B. Ribas, M. Carbo, D. Rusjan, F. Secchi, M. Tomás, Z. Zsofi, and H. Medrano. 2008. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought adapted Vitis hybrid. Physiol. Plant. 134:313–323.
  • Pou, A., H. Medrano, M. Tomás, S. Martorell, M. Ribas-Carbó, and J. Flexas. 2012. An anisohydric grapevine variety performs better under moderate water stress and recovery than isohydric cultivars. Plant Soil 359:335–349.
  • Santisi, J. 2011. Warming up the wine industry. Environ. Mag. 22(6):15–17.
  • Santos, T.P., C.M. Lopes, M.L. Rodrigues, C.R. Souza, J.M. Ricardo-da-Silva, J.P. Maroco, J.S. Pereira, and M.M. Chaves. 2007. Effect of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Sci. Hort. 112:321–330.
  • Schultz, H.R. 2000. Physiological mechanisms of water use efficiency in grapevines under drought conditions. Acta Hort. 526:115–136.
  • Schultz, H.R. 2003. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ. 26:1393–1405.
  • Shakel, K. 2007. Water relations of woody perennial plant species. J. Intl. Sci. Vigne Vin 41:121–129.
  • Soar, C.J., M.J. Collins, and V.O. Sadras. 2009. Irrigated Shiraz vines (Vitis vinifera) upregulate gas exchange and maintain berry growth in response to short spells of high maximum temperature in the field. Funct. Plant Biol. 36:801–814.
  • Souza, C.R., J.P. Maroco, T. Santos, P. Tiago, M. Santos, L. Rodrigues, C.M. Lopes, and M. Chaves. 2003. Partial rootzone-drying: Regulation of stomatal aperture and carbon assimilation in field grown grapevines (Vitis vinifera cv Moscatel). Funct. Plant Biol. 30:653–662.
  • Tardieu, F., and W.J. Davies. 1993. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ. 16:341–349.
  • Tognetti, R., R. d’Andria., G. Morelli, D. Calandrelli, and F. Fragnito. 2004. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant Soil 263:249–264.
  • Tomás, M., H. Medrano, E. Brugnoli, J.M. Escalona, S. Martorell, A. Pou, M. Ribas-Carbó, and J. Flexas. 2014. Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Aust. J. Grape Wine Res. 20:272–280.
  • Valladares, F., and R.W. Pearcy. 1997. Interactions between water stress, sun–shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ. 20:25–36.
  • Van Leeuwen, C., O. Tregoat, X. Choné, B. Bois, D. Pernet, and J.P. Gaudillère. 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Intl. Sci. Vigne Vin 43:121–134.
  • Wahbi, S., R. Wakrim, B. Aganchich, H. Tahi, and R. Serraj. 2005. Effects of partial rootzone drying (PRD) on adult olive tree (Olea europea) in field conditions under arid climate—I. Physiological and agronomic responses. Agr. Ecosyst. Environ. 106:289–301.
  • Webb, L.B., P.H. Whetton, and E.W.R. Barlow. 2007. Modeled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 13:165−175.
  • Webb, A.A. 2012. Can timber and water resources be sustainably co-developed in south-eastern New South Wales, Australia? Environ. Develop. Sustain. 14:233−252.
  • Williams, L.E., D.W. Grimes, and C.J. Phene. 2010a. The effects of applied water at various fractions of measured evapotranspiration on water relations and vegetative growth of Thompson Seedless. Irrig. Sci. 43:221–232.
  • Williams, L.E., D.W. Grimes, and C.J. Phene. 2010b. The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless. Irrig. Sci. 28:233–243.
  • Zufferey, V., F. Murisier, and H.R. Schultz. 2000. A model analysis of the photosynthetic response of Vitis vinifera L. cvs Riesling and Chasselas leaves in the field: I. Interactions of age, light and temperature. Vitis 39:19–26.
  • Zufferey, V., H. Cochard, T. Ameglio, J.L. Spring, and O. Viret. 2011. Diurnal cycles of embolism formation and repair in petioles of grapevine (Vitis vinifera cv. Chasselas). J. Exp. Bot. 62:3885–3894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.