1,949
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Phenolic Compounds, Antioxidant Activity and Bioaccessibility in Physalis Peruviana L.

, , &

Literature Cited

  • Barak, T.H., E. Celep, Y. İnan, and E. Yesilada. 2019. Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts. Ind. Crops Prod. 131:62–69. doi: 10.1016/j.indcrop.2019.01.037.
  • Bernal, C.-A., M. Aragón, and Y. Baena. 2016. Dry powder formulation from fruits of Physalis peruviana L. standardized extract with hypoglycemic activity. Powder Technol. 301:839–847. doi: 10.1016/j.powtec.2016.07.008.
  • Carvalho, L.M.J., P.B. Gomes, R.L.O. de Godoy, S. Pacheco, P.H.F. do Monte, J.L.V. de Carvalho, M.R. Nutti, A.C.L. Neves, A.C.R.A. Vieira, and S.R.R. Ramos. 2012. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 47(2):337–340. doi: 10.1016/j.foodres.2011.07.040.
  • Dossi, N., R. Toniolo, F. Impellizzieri, F. Tubaro, G. Bontempelli, F. Terzi, and E. Piccin. 2017. A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil. Anal. Chim. Acta 950:41–48. doi: 10.1016/j.aca.2016.11.030.
  • Gouveia, C., M.F. Peres, M.C. Vitorino, L.R. Henriques, and M.C. Pinheiro-Alves. 2003. Polifenois e tocoferóis em azeites monovarietais. Livro de Atas, Castelo Branco, Portugal.
  • Guiné, R.P.F., M.J. Barroca, F.J. Gonçalves, M. Alves, S. Oliveira, and M. Mendes. 2015. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chem. 168:454–459. doi: 10.1016/j.foodchem.2014.07.094.
  • Guiné, R.P.F., S.M.A. Soutinho, and F.J. Gonçalves. 2014. Phenolic compounds and antioxidant activity in red fruits produced in organic farming. Croatian J. Food Sci. Technol. 6(1):15–26.
  • Hassanien, M.F.R. 2011. Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Rev. Int. 27(3):259–273. doi: 10.1080/87559129.2011.563391.
  • Hellinger, R., J. Koehbach, H. Fedchuk, B. Sauer, R. Huber, C.W. Gruber, and C. Gründemann. 2014. Immunosuppressive activity of an aqueous Viola tricolor herbal extract. J. Ethnopharmacol. 151(1):299–306. doi: 10.1016/j.jep.2013.10.044.
  • Hithamani, G., and K. Srinivasan. 2017. Bioavailability of finger millet (Eleusine coracana) phenolic compounds in rat as influenced by co-administered piperine. Food Biosci. 19:101–109. doi: 10.1016/j.fbio.2017.06.008.
  • Iglesias-Carres, L., A. Mas-Capdevila, F.I. Bravo, G. Aragonès, A. Arola-Arnal, and B. Muguerza. 2019. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chem. 299:125092. doi: 10.1016/j.foodchem.2019.125092.
  • Licodiedoff, S. 2012. Caracterização físico-química e compostos bioativos em Physalis peruviana e derivados. Universidade Federal do Paraná, Curitiba, Brazil.
  • Licodiedoff, S., L.A.D. Koslowski, and R.H. Ribani. 2013. Flavonols and antioxidant activity of Physalis peruviana L. fruit at two maturity stages. Acta Scientiarum. Technology 35(2):393–399. doi: 10.4025/actascitechnol.v35i2.13265.
  • Lima, C.S.M., S.P. Galarça, D.L. Betemps, A.R. de Rufato, and L. Rufato. 2012. Physical, chemical and phytochemical assessment of Physalis fruits over the harvest period. Rev. Bras. Fruticultura 34(4):1004–1012. doi: 10.1590/S0100-29452012000400006.
  • Luchese, C.L., P.D. Gurak, and L.D.F. Marczak. 2015. Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT Food Sci. Technol. 63(2):1128–1136. doi: 10.1016/j.lwt.2015.04.060.
  • Martínez-Huélamo, M., S. Tulipani, R. Estruch, E. Escribano, M. Illán, D. Corella, and R.M. Lamuela-Raventós. 2015. The tomato sauce making process affects the bioaccessibility and bioavailability of tomato phenolics: A pharmacokinetic study. Food Chem. 173:864–872. doi: 10.1016/j.foodchem.2014.09.156.
  • McDougall, G.J., P. Dobson, P. Smith, A. Blake, and D. Stewart. 2005. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J. Agric. Food Chem. 53(15):5896–5904. doi: 10.1021/jf050131p.
  • Meda, A., C.E. Lamien, M. Romito, J. Millogo, and O.G. Nacoulma. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 91(3):571–577. doi: 10.1016/j.foodchem.2004.10.006.
  • Oliveira, J.A.R., L.H.S. Matins, M.A.M. Vasconcelos, R.S. Pena, and A.V. Carvalhoo. 2011. Caracterização física, fisicoquímica e potencial tecnológico de Frutos de campu (Physalis angulata L.). Rev. Bras. Tecnol. Agroindustrial. 5:573–583. doi: 10.3895/S1981-36862011000200009.
  • Oliveira, S.F. 2016. Estudo das propriedades físico-químicas e avaliação de compostos bioativos em Physalis peruviana L. Viseu, Portugal, ESAV, Master thesis in Food Quality and Technology.
  • Oliveira, S.F., F.J.A. Gonçalves, P.M.R. Correia, and R.P.F. Guiné. 2016. Physical properties of Physalis peruviana L. Open Agric. 1(1):55–59. doi: 10.1515/opag-2016-0007.
  • Patarra, R.F., L. Paiva, A.I. Neto, E. Lima, and J. Baptista. 2010. Nutritional value of selected macroalgae. J. Appl. Phycol. 23(2):205–208. doi: 10.1007/s10811-010-9556-0.
  • Peixoto, C.M., M.I. Dias, M.J. Alves, R.C. Calhelha, L. Barros, S.P. Pinho, and I.C.F.R. Ferreira. 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 253:132–138. doi: 10.1016/j.foodchem.2018.01.163.
  • Puente, L.A., C.A. Pinto-Muñoz, E.S. Castro, and M. Cortés. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 44(7):1733–1740. doi: 10.1016/j.foodres.2010.09.034.
  • Ramadan, M.F. 2011. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): An overview. Food Res. Int. 44(7):1830–1836. doi: 10.1016/j.foodres.2010.12.042.
  • Rey, D.P., L.F. Ospina, and D.M. Aragón. 2015. Inhibitory effects of an extract of fruits of Physalis peruviana on some intestinal carbohydrases. Rev. Colomb. Ciencias Químico 44(1):72–89. doi: 10.15446/rcciquifa.v44n1.54281.
  • Ribas-Agustí, A., O. Martín-Belloso, R. Soliva-Fortuny, and P. Elez-Martínez. 2019. Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. J. Funct. Foods. 59:206–214. doi: 10.1016/j.jff.2019.05.041.
  • Ribeiro, V.L.M.C. 2012. Estudo de compostos bioativos em Adansonia digitata e o seu potencial fitoquímico na indústria farmacêutica. Porto, Portugal, Univercidade Fernando Pessoa e Faculadade de Ciências da Saúde, Master thesis in Pharmaceutical Sciences.
  • Rockenbach, I.I., E. Rodrigues, C. Cataneo, L.V. Gonzaga, A. Lima, J. Mancini-Filho, and R. Fett. 2008. Ácidos fenólicos e atividade antioxidante em fruto de Physalis peruviana L. Alimentos E Nutrição Araraquara. 19(3):271–276.
  • Rodriguez-Amaya, D.B. 2015. Status of carotenoid analytical methods and in vitro assays for the assessment of food quality and health effects. Curr. Opin. Food Sci. 1:56–63. doi: 10.1016/j.cofs.2014.11.005.
  • Saini, R.K., S.H. Nile, and S.W. Park. 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 76(Part 3):735–750. doi: 10.1016/j.foodres.2015.07.047.
  • Sang-ngern, M., U.J. Youn, E.-J. Park, T.P. Kondratyuk, C.J. Simmons, M.M. Wall, M. Ruf, S.E. Lorch, E. Leong, J.M. Pezzuto. 2016. Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity. Bioorg. Med. Chem. Lett. 26(12):2755–2759. doi: 10.1016/j.bmcl.2016.04.077.
  • Santos, S.C.R.V.L., R.P.F. Guiné, and A. Barros. 2014. Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of Rocha variety (Pyrus communis L.). Food Meas. 8(2):105–112. doi: 10.1007/s11694-014-9170-y.
  • Soufi, O., C. Romero, and H. Louaileche. 2014. Ortho-diphenol profile and antioxidant activity of Algerian black olive cultivars: Effect of dry salting process. Food Chem. 157:504–510. doi: 10.1016/j.foodchem.2014.02.075.
  • Świeca, M., U. Gawlik-Dziki, D. Dziki, and B. Baraniak. 2017. Wheat bread enriched with green coffee – In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity. Food Chem. 221:1451–1457. doi: 10.1016/j.foodchem.2016.11.006.
  • Valdivia-Mares, L.E., F.A.R. Zaragoza, J.J.S. González, and O. Vargas-Ponce. 2016. Phenology, agronomic and nutritional potential of three wild husk tomato species (Physalis, Solanaceae) from Mexico. Sci. Hortic. 200:83–94. doi: 10.1016/j.scienta.2016.01.005.
  • Vasco, C., J. Ruales, and A. Kamal-Eldin. 2008. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 111(4):816–823. doi: 10.1016/j.foodchem.2008.04.054.
  • Vega-Gálvez, A., J. López, M.J. Torres-Ossandón, M.J. Galotto, L. Puente-Díaz, I. Quispe-Fuentes, and K. Di Scala. 2014. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT Food Sci. Technol. 58(2):519–526. doi: 10.1016/j.lwt.2014.04.010.
  • Vega-Gálvez, A., R. Díaz, J. López, M.J. Galotto, J.E. Reyes, M. Perez-Won, L. Puente-Díaz, and K. Di Scala. 2016. Assessment of quality parameters and microbial characteristics of Cape gooseberry pulp (Physalis peruviana L.) subjected to high hydrostatic pressure treatment. Food Bioprod. Process. 97:30–40. doi: 10.1016/j.fbp.2015.09.008.
  • Yang, Y.-K., S. Xie, W. Xu, Y. Nian, X.-L. Liu, X.-R. Peng, Z.-T. Ding, and M.-H. Qiu. 2016. Six new physalins from Physalis alkekengi var. franchetii and their cytotoxicity and antibacterial activity. Fitoterapia. 112:144–152. doi: 10.1016/j.fitote.2016.05.010.
  • Zheng, J., M. Meenu, and B. Xu. 2019. A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed. Anal. 172:268–277. doi: 10.1016/j.jpba.2019.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.