2,856
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Antioxidant and toxicity activity of aqueous extracts from various parts of breadfruit and breadnut

, & ORCID Icon
Pages S1639-S1651 | Published online: 11 Oct 2020

References

  • Adeleke, R.O., and O.A. Abiodun. 2010. Nutritional composition of breadnut seeds (Artocarpus camansi). Afr. J. Agric. Res. 5:1273–1276.
  • Adjimani, J.P., and P. Asare. 2015. Antioxidant and free radical scavenging activity of iron chelators. Toxicol. Rep. 2:721–728. doi: 10.1016/j.toxrep.2015.04.005.
  • Ahmed, D., M.M. Khan, and R. Saeed. 2015. Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants 4(2):394–409. doi: 10.3390/antiox4020394.
  • Bakar, M.F.A., M. Mohamed, A. Rahmat, and J. Fry. 2009. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry 113(2):479–483. doi: 10.1016/j.foodchem.2008.07.081.
  • Boeckler, G.A., J. Gershenzon, and S.B. Unsicker. 2011. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509.
  • Ćujić, N., K. Šavikin, T. Janković, D. Pljevljakušić, G. Zdunić, and S. Ibrić. 2016. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry. 194:135–142. doi: 10.1016/j.foodchem.2015.08.008.
  • Davalli, P., T. Mitic, A. Caporali, A. Lauriola, and D. D’Arca. 2016. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid. Med. Cell. Longev. 2016:3565127. doi: 10.1155/2016/3565127.
  • Fernández-Agulló, A., E. Pereira, M.S. Freire, P. Valentao, P.B. Andrade, J. González-Álvarez, and J.A. Pereira. 2013. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products. 113:126–132. doi: 10.1016/j.indcrop.2012.05.021.
  • Fidrianny, I., V. Virna, and M. Insanu. 2018. ANTIOXIDANT POTENTIAL OF DIFFERENT PARTS OF BOGOR PINEAPPLE (Ananas comosus [L.] MERR. VAR. QUEEN) CULTIVATED IN WEST JAVA-INDONESIA. Asian Journal of Pharmaceutical and Clinical Research 11(1):129–133. doi: 10.22159/ajpcr.2018.v11i1.22022.
  • Gastaldi, B., G. Marino, Y. Assef, F.M. Sofrás, C.A.N. Catalán, and S.B. González. 2018. Nutraceutical Properties of Herbal Infusions from Six Native Plants of Argentine Patagonia. Plant Foods Hum. Nutr. 73(3):180–188. doi: 10.1007/s11130-018-0680-3.
  • Gülçin, İ., Z. Huyut, M. Elmastaş, and H.Y. Aboul-Enein. 2010. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3(1):43–53. doi: 10.1016/j.arabjc.2009.12.008.
  • Hakim, E.H., S.A. Achmad, L.D. Juliawaty, L. Makmur, Y.M. Syah, N. Aimi, M. Kitajima, H. Takayama, and E.L. Ghisalberti. 2006. Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae). J. Nat. Med. 60:161–184.
  • Hannachi, H., W. Elfalleh, M. Laajel, I. Ennajeh, R.F. Mechlouch, and K. Nagaz. 2019. Chemical Profiles and Antioxidant Activities of Leaf, Pulp, and Stone of Cultivated and Wild Olive Trees (Olea Europaea L.). Int. J. Fruit Sci 1–21. doi: 10.1080/15538362.2019.1644574.
  • Hartung, J. 1987. Testing the antimicrobial activity of compounds from the air of animal houses using the Microtox test. Environ. Toxicol. 2(1):1–15.
  • Hashim, N., M. Rahmani, M.A. Sukari, A.M. Ali, N.B. Alitheen, R. Go, and H.B.M. Ismail. 2010. Two new xanthones from Artocarpus obtusus. J. Asian Nat. Prod. Res. 12(2):106–112. doi: 10.1080/10286020903450411.
  • Hendry, G.A.F., K. Thompson, C.J. Moss, E. Edwards, and P.C. Thorpe. 1994. Seed persistence: A correlation between seed longevity in the soil and ortho-dihydroxyphenol concentration. Functional Ecology 8(5):658–664. doi: 10.2307/2389929.
  • Jagtap, U.B., and V.A. Bapat. 2010. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 129(2):142–166. doi: 10.1016/j.jep.2010.03.031.
  • Jagtap, U.B., S.N. Panaskar, and V.A. Bapat. 2010. Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp. Plant Foods for Human Nutrition 65(2):99–104. doi: 10.1007/s11130-010-0155-7.
  • Jalal, T.K., I.A. Ahmed, M. Mikail, L. Momand, S. Draman, M.L.M. Isa, M.S.B. Rasad, M.N. Omar, M. Ibrahim, and R.A. Wahab. 2015. Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (Breadfruit) of underutilized tropical fruit extracts. Appl. Biochem. Biotechnol. 129(7):3231–3243. doi: 10.1007/s12010-015-1499-0.
  • Jayasinghe, U.L.B., T.B. Samarakoon, B.M.M. Kumarihamy, N. Hara, and Y. Fujimoto. 2008. Four new prenylated flavonoids and xanthones from the root bark of Artocarpus nobilis. Fitoterapia 79(1):37–41. doi: 10.1016/j.fitote.2007.07.014.
  • Jones, A.M.P., S.J. Murch, J. Wiseman, and D. Ragone. 2013. Morphological diversity in breadfruit (Artocarpus, Moraceae): Insights into domestication, conservation, and cultivar identification. Genetic Resources and Crop Evolution 60(1):175–192. doi: 10.1007/s10722-012-9824-8.
  • Kasangana, P.B., P.S. Haddad, and T. Stevanovic. 2015. Study of polyphenol content and antioxidant capacity of Myrianthus arboreus (Cecropiaceae) root bark extracts. Antioxidants 4(2):410–426. doi: 10.3390/antiox4020410.
  • Khoddami, A., M. Wilkes, and T. Roberts. 2013. Techniques for analysis of plant phenolic compounds. Molecules 18(2):2328–2375. doi: 10.3390/molecules18022328.
  • Li, W.J., X.L. Cheng, J. Liu, R.C. Lin, G.L. Wang, S.S. Du, and Z.L. Liu. 2012. Phenolic compounds and antioxidant activities of Liriope muscari. Molecules 17(2):1797–1808. doi: 10.3390/molecules17021797.
  • Liu, Y., D. Ragone, and S.J. Murch. 2015. Breadfruit (Artocarpus altilis): A source of high-quality protein for food security and novel food products. Amino Acids 47(4):847–856. doi: 10.1007/s00726-015-1914-4.
  • Loganayaki, N., P. Siddhuraju, and S. Manian. 2013. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L.. J. Food. Sci. Tech. 50(4):687–695. doi: 10.1007/s13197-011-0389-x.
  • Loizzo, M.R., R. Tundis, U.G. Chandrika, A.M. Abeysekera, F. Menichini, and N.G. Frega. 2010. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) Leaves Extracts. J. Food. Sci. 75:M291–M295.
  • Luzuriaga-Quichimbo, C.X., J. Blanco-Salas, C.E. Cerón-Martínez, and T. Ruiz-Téllez. 2019. Providing added value to local uses of paparahua (Artocarpus altilis) in Amazonian Ecuador by phytochemical data review. Revista Brasileira De Farmacognosia 29(1):62–68. doi: 10.1016/j.bjp.2018.09.008.
  • Makmur, L., S. Syamsurizal, T. Achmad, S.A. Achmad, N. Aimi, E.H. Hakim, M. Kitajima, and H. Takayama. 2000. Artoindonesianin C, a New Xanthone Derivative from Artocarpus teysmanii. J. Nat. Prod. 63(2):243–244. doi: 10.1021/np990220u.
  • Mariscal, A., M.T. Peinado, M. Carnero-Varo, and J. Fernández-Crehuet. 2003. Influence of organic solvents on the sensitivity of a bioluminescence toxicity test with Vibrio harveyi. Chemosphere 50(3):349–354. doi: 10.1016/S0045-6535(02)00312-0.
  • Méabed, E.M.H., N.M. El-Sayed, A.I.B. Abou-Sreea, and M.H.H. Roby. 2018. Chemical analysis of aqueous extracts of Origanum majorana and Foeniculum vulgare and their efficacy on Blastocystis spp . cysts. Cysts. Phytomedicine. 43:158–163. doi: 10.1016/j.phymed.2018.04.017.
  • Mierziak, J., K. Kostyn, and A. Kulma. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265. doi: 10.3390/molecules191016240.
  • Mittler, R. 2017. ROS are good. Trends in Plant Science 22(1):11–19. doi: 10.1016/j.tplants.2016.08.002.
  • Mushtaq, M., B. Sultana, F. Anwar, A. Adnan, and S.S.H. Rizvi. 2015. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. The Journal of Supercritical Fluids. 104:122–131. doi: 10.1016/j.supflu.2015.05.020.
  • Nasuhoglu, D., P. Westlund, S. Isazadeh, S. Neamatallah, and V. Yargeau. 2017. Development of a facile and high-throughput bioluminescence assay using Vibrio fischeri to determine the chronic toxicity of contaminated samples. . Bulletin of Environmental Contamination and Toxicology 98(2):196–203. doi: 10.1007/s00128-016-2008-z.
  • Nnam, N.M., and M.O. Nwokocha. 2003. Chemical and organoleptic evaluation of biscuits made from mixtures of hungry rice, acha (Digitaria exilis) sesame; (Sesamum indicum); and breadfruit (Artocarpus atilis) flours. Plant Foods Hum. Nutr. 58:1–11.
  • Ragone, D., and C.G. Cavaletto. 2006. Sensory evaluation of fruit quality and nutritional composition of 20 breadfruit (Artocarpus, Moraceae) cultivars. Econ. Bot. 60(4):335–346. doi: 10.1663/0013-0001(2006)60[335:SEOFQA]2.0.CO;2.
  • Roby, M.H.H., M.A. Sarhan, K.A.-H. Selim, and K.I. Khalel. 2013. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). . Industrial Crops and Products. 44:437–445. doi: 10.1016/j.indcrop.2012.10.012.
  • Rosenkranz, H.S., J. Pangrekar, and G. Klopman. 1993. Similarities in the mechanisms of antibacterial activity (Microtox™ assay) and toxicity to vertebrates. Alternatives to Laboratory Animals 21(4):489–500. doi: 10.1177/026119299302100412.
  • Sahreen, S., M.R. Khan, and R.A. Khan. 2010. Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chemistry 122(4):1205–1211. doi: 10.1016/j.foodchem.2010.03.120.
  • Salleh, R.M., and N.S.M. Jinis. 2016. Proximate composition, mineral and total phenolic contents, and scavenging activity of breadnut fruit (Artocarpus camansi). J. Trop. Agric. Food Sci. 44:1–7.
  • Santos, P.A., L.C. de Rezende, J.C.S.D. Oliveira, J.M. David, and J.P. David. 2019. Chemical Study, Antioxidant and Cytotoxic Activities of Oil Seeds of Spondias tuberosa (Anacardiaceae). . International Journal of Fruit Science 22(1):246–257. doi: 10.1080/15538362.2018.1502721.
  • Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. . Journal of Functional Foods. 18:820–897. doi: 10.1016/j.jff.2015.06.018.
  • Sidahmed, H.M.A., N.M. Hashim, J. Amir, M.A. Abdulla, A.H.A. Hadi, S.I. Abdelwahab, M.M.E. Taha, P. Hassandarvish, X. Teh, M.F. Loke, et al. 2013. Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo. Phytomedicine 20(10):834–843. doi: 10.1016/j.phymed.2013.03.002.
  • Skotti, E., E. Anastasaki, G. Kanellou, M. Polissiou, and P.A. Tarantilis. 2014. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind. Crops Prod. 53:46–54. doi: 10.1016/j.indcrop.2013.12.013.
  • Tamuly, C., R. Buragohain, M. Hazarika, J. Bora, and P.R. Gajurel. 2015. Assessment of Antioxidant Activity of Six Ficus Species—Underutilized Fruits from Arunachal Pradesh in North East India. International Journal of Fruit Science 15(1):85–99. doi: 10.1080/15538362.2014.931174.
  • Thomulka, K.W., D.J. McGee, and J.H. Lange. 1993. Detection of biohazardous materials in water by measuring bioluminescence reduction with the marine organism Vibrio harveyi. J. Environ. Sci. Health A 28(9):2153–2166.
  • Tuominen, A. 2013. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies. Phytochemistry 95:408-420.
  • Tuominen, A., E. Toivonen, P. Mutikainen, and J.-P. Salminen. 2013. Defensive strategies in Geranium sylvaticum. Part 1: Organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids. Phytochemistry. 95:394–407. doi: 10.1016/j.phytochem.2013.05.013.
  • Vianney, Y.M., N. Amanda, K. Pieknell, C.W. Johan, and P.H. Hardjo. 2018. Evaluation of the antioxidant and antibacterial activity of breadnut (Artocarpus camansi Blanco) leaf extracts. Indian J. Nat. Prod. Resour. 9:151–159.
  • Westlund, P., D. Nasuhoglu, S. Isazadeh, and V. Yargeau. 2018. Investigation of acute and chronic toxicity trends of pesticides using high-throughput bioluminescence assay based on the test organism Vibrio fischeri. Archives of Environmental Contamination and Toxicology 74(4):557–567. doi: 10.1007/s00244-017-0483-9.
  • Zerega, N., T. Wiesner-Hanks, D. Ragone, B. Irish, B. Scheffler, S. Simpson, and F. Zee. 2015. Diversity in the breadfruit complex (Artocarpus, Moraceae): Genetic characterization of critical germplasm. Tree Genetics & Genomes 11(1):4. doi: 10.1007/s11295-014-0824-z.
  • Zerega, N.J.C., D. Ragone, and T.J. Motley. 2005. Systematics and Species Limits of Breadfruit (Artocarpus, Moraceae). Syst. Bot. 30(3):603–615. doi: 10.1600/0363644054782134.
  • Zhang, Y.J., R.Y. Gan, S. Li, Y. Zhou, A.N. Li, D.P. Xu, and H.B. Li. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138–21156. doi: 10.3390/molecules201219753.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.