1,987
Views
0
CrossRef citations to date
0
Altmetric
Article

Deriving Biomass Allocation and Carbon Stocks in Fruit Components of Strychnos Madagascariensis (Poir.) And Strychnos Spinosa (Lam.) In South Africa

, , &

References

  • Akweni, A.L., G.E. Zharare, and C. Zimudzi. 2021. Predicting the number of fruits and the seed biomass of Trichilia emetica (Vahl.) in the eastern coastal region of South Africa. Trees, For. People. 100138. doi: 10.1016/j.tfp.2021.100138.
  • Akweni, A.L., S. Sibanda, G.E. Zharare, and C. Zimudzi. 2020. Fruit-based allometry of Strychnos madagascariensis and S. spinosa (Loganiaceae) in the Savannah woodlands of the Umhlabuyalingana municipality, KwaZulu-Natal, South Africa. Trees, For. People. 2:100025. doi: 10.1016/j.tfp.2020.100025.
  • Akweni, A.L., S. Sibanda, G.E. Zharare, and C. Zimudzi. 2021. Datasets supporting fruit components biomass and carbon stocks derivation of Strychnos madagascariensis and S. spinosa [dataset]. Mendeley Data. 01 Feb. 2021. https://data.mendeley.com/datasets/xczzcyjd69/1.
  • Alemdag, I.1981. Equations de masse pour la portion epigée de six essences de feuillus dans des peuplements naturels de la forêt experimentale de Petawawa. Can. Forest. Serv. This is a technical report from the  Institut forestier national de Petawawa. <https://d1ied5g1xfgpx8.cloudfront.net/pdfs/4473.pdf>. Accessed 4 Mar. 2021.
  • Arunkumar, P., V. Sadish Kumar, S. Saran, H. Bindun, and S.P. Devipriya. 2019. Isolation of active coagulant protein from the seeds of Strychnos potatorum - a potential water treatment agent. Environ. Technol. 40(12):1624–1632. doi: 10.1080/09593330.2018.1427798.
  • Avakoudjo, H.G.G., A. Hounkpèvi, R. Idohou, M.W. Koné, and A.E. Assogbadjo. 2020. Local Knowledge, Uses, and Factors Determining the Use of Strychnos spinosa Organs in Benin (West Africa). Econ. Bot. 74(1):15–31. doi: 10.1007/s12231-019-09481-0.
  • Basu, P. 2018. Introduction. Biomass gasification, pyrolysis and torrefaction, p. 1–27. In: Practical design and theory. 3rd ed. Academic Press, Cambridge, MA.
  • Bauwens, S., and A. Fayolle. 2014. Protocole de collecte des données sur le terrain et au laboratoire nécessaires pour quantifier la biomasse aérienne des arbres et pour l’établissement d’équations allométriques. ULiège- Gembloux Agro-Bio Tech. Nature+, Belgium. https://hdl.handle.net/2268/170397
  • Beaufay, C., A. Ledoux, O. Jansen, A. Bordignon, S. Zhao, C.N. Teijaro, R.B. Andrade, J. Quetin-Leclercq, and M. Frédérich. 2018. In vivo Antimalarial and Antitrypanosomal Activity of Strychnogucine B, a Bisindole Alkaloid from Strychnos icaja. Planta Med. 84(12–13):881–885. doi: 10.1055/a-0644-2723.
  • Boon, R. 2010. Pooley’s trees of Eastern South Africa, a complete guide, p. 626. Flora & Fauna Publications Trust. Totnes.
  • Botha, G., and N. Porat. 2007. Soil chronosequence development in dunes on the southeast African plain, Maputaland, South Africa. Quat. Int. 162:111–132. doi: 10.1016/j.quaint.2006.10.028.
  • Brown, S., A. Gillespie, and A. Lugo. 1989. Biomass Estimation Methods for Tropical Forests with Application to Forest Inventory Data. For. Sci. 35(4):881–902.
  • Campbell, B., P. Frost, and N. Byron. 1996. Miombo woodlands and their use: Overview and key issues, p. 1–5. In: B. Campbell (ed.). The miombo in transition: Woodlands and welfare in Africa. Center for International Forestry Research, Bogor, Indonesia.
  • Carreiras, J., J. Melo, and M. Vasconcelos. 2013. Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa) Using L-Band Synthetic Aperture Radar Data. Remote Sens. 5:1524–1548. doi: 10.3390/rs5041524.
  • Chambers, J., J.D. Santos, R. Ribeiro, and N. Higuchi. 2001. Tree damage, allometric relationship, and above-ground net primary production in central Amazon forest. For. Ecol. Manag. 152:73–84. doi: 10.1016/S0378-1127(00)00591-0.
  • Chavan, B.L., and G.B. Rasal. 2011. Potentiality of Carbon Sequestration in six year ages young plant from University campus of Aurangabad. Glob. J. Res. Eng. 7:15–20.
  • Chave, J., R. Condit, S. Aguilar, A. Hernandez, S. Lao, and R. Perez. 2004. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. B, Biol. Sci. 359(1443):409–420. doi: 10.1098/rstb.2003.1425.
  • Chen, X., L.B. Hutley, and D. Eamus. 2003. Carbon balance of a tropical savanna of northern Australia. Oecologia 137(3):405–416. doi: 10.1007/s00442-003-1358-5.
  • Delaude, C., P. Thepenier, M.J. Jacquier, G. Massiot, and L. Le Men-Olivier. 1992. Contribution to the study of African Strychnos: Alkaloïds of Strychnos cocculoides, Strychnos lucens, Strychnos madagascariensis, Strychnos minfiensis, Strychnos mitis, Strychnos pungens and Strychnos spinosa. Bull. Soc. R. Sci. Liege 61(6):429–440.
  • Dimobe, K., S. Mensah, D. Goetze, A. Ouédraogo, S. Kuyah, S. Porembski, and A. Thiombiano. 2018. Aboveground biomass partitioning and additive models for Combretum glutinosum and Terminalia laxiflora in West Africa. Biomass Bioenerg. 115:151–159. doi: 10.1016/j.biombioe.2018.04.022.
  • Edomah, N. 2018. Economics of energy supply, p. 1–16. In: N. Edomah, ed. Reference module in earth systems and environmental sciences: 2018. Elsevier, Amsterdam, Netherlands.
  • Focardi, S. 2008. Biomass, Gross Production, and Net Production. Encyclopedia Ecol. 2008:453–461.
  • Fortier, J., B. Truax, D. Gagnon, and F. Lambert. 2017. Allometric equations for estimating compartment biomass and stem volume in mature hybrid Poplars: General or Site-specific? Forests 8(9):309. doi: 10.3390/f8090309.
  • Gautam, S., A.S. Arora, A.K. Singh, P. Ekka, H. Daniel, B. Gokul, S. Toppo, P. Chockalingam, H. Kumar, and J.F. Lyngdoh. 2020. Coagulation influencing parameters investigation on textile industry discharge using Strychnos potatorum seed powders. Environ. Dev. Sustain. 23(4):5666–5673. doi: 10.1007/s10668-020-00836-5.
  • Hassan, H., K.I. Omoniyi, F.G. Okibe, A.A. Nuhu, E.G. Echioba, and E.C. Egwim. 2020. Assessment of Wound Healing Activity of Green Synthesized Titanium Oxide Nanoparticles using Strychnos spinosa and Blighia sapida. J. Appl. Sci. Environ. Manag. 24(2):197–206.
  • He, W., P. Wang, J. Chen, and W. Xie. 2020. Recent progress in the total synthesis of Strychnos alkaloids. Org. Biomol. Chem. 18(6):1046–1056. doi: 10.1039/C9OB02627D.
  • Henry, M., A. Besnardd, W. Asantee, J. Eshunf, S. Adu-Bredug, R. Valentinic, M. Bernouxb, and L. Saint-Andréh. 2010. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 260(8):1375–1388. doi: 10.1016/j.foreco.2010.07.040.
  • Houghton, R.A. 2008. Biomass, p. 448–453. In: S.E. Jorgensen and B.D. Fath,eds.Encyclopedia of ecology, 1st ed. Elsevier, Amsterdam, Netherlands.
  • Isa, A.I., M.D. Awouafack, J.P. Dzoyem, M. Aliyu, R.A. Magaji, J.O. Ayo, and J.N. Eloff. 2014. Some Strychnos spinosa (Loganiaceae) leaf extracts and fractions have good antimicrobial activities and low cytotoxicities. BMC Complement Altern. Med. 14:456. doi: 10.1186/1472-6882-14-456.
  • Jana, B.K., S. Biswas, M. Majumder, P.K. Roy, and A. Mazumdar. 2009. Carbon sequestration rate and aboveground biomass carbon potential of four young species. J. Ecol. Nat. Environ. 1(2):15–24.
  • Jewitt, D.2018. Vegetation type conservation targets, status and level of protection in KwaZulu-Natal in 2016. Afr. Biodivers. Conserv. 48(1):1–10.
  • Kaitaniemi, P., A. Lintunen, and R. Sievänen. 2020. Power-law estimation of branch growth. Ecol. Modell. 416:108900. doi: 10.1016/j.ecolmodel.2019.108900.
  • Koffi, C.K., A. Lourme-Ruiz, H. Djoudi, E. Bouquet, S. Dury, and D. Gautier. 2020. The contributions of wild tree resources to food and nutrition security in sub-Saharan African drylands: A review of the pathways and beneficiaries. Int. For. Rev. 2020(1):64.
  • Kuyah, S., J. Dietz, C. Muthuria, R. Jamnadass, P. Mwangi, R. Coe, and H. Neufeldt. 2012. Allometric equations for estimating biomass in agricultural landscapes: Belowground biomass. Agric. Ecosyst. Environ. 158:225–234. doi: 10.1016/j.agee.2012.05.010.
  • Lehtonen, A. 2005. Estimating foliage biomass in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. Tree Physiol. 25(7):803–811. doi: 10.1093/treephys/25.7.803.
  • Mizrahi, Y., A. Nerd, and Y. Sitrit. 2002. New fruits for arid climates, p. 378–384. In: J. Janick and A. Whipkey (eds.). Trends in new crops and new uses. ASHS Press, Alexandria, VA.
  • Mors, W.B., M.C. Nascimento, B.M. Pereira, and N.A. Pereira. 2000. Plant natural products active against snake bite ̶ the molecular approach. Phytochemistry 55(6):627–642. doi: 10.1016/S0031-9422(00)00229-6.
  • Mucina, L. 2018 Vegetation survey and classification of subtropical forests of Southern Africa. Vol. 2018. Springer, Midtown Manhattan, New York City.
  • Mugasha, W., T. Eid, M. Bollandsas, E. Malimbwi, S.A. Chamshama, E. Zahabu, and J.Z. Katani. 2013. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For. Ecol. Manag. 310:87–101. doi: 10.1016/j.foreco.2013.08.003.
  • Ngadze, R.T., A.R. Linnemann, V. Fogliano, and R. Verkerk. 2019. Monkey Orange fruit juice improves the nutritional quality of a maize-based diet. Food Res. Int. 116:870–877. doi: 10.1016/j.foodres.2018.09.022.
  • Ngadze, R.T., R. Verkerk, L.K. Nyanga, V. Fogliano, and A.R. Linnemann. 2017. Improvement of traditional processing of local monkey Orange (Strychnos spp.) fruits to enhance nutrition security in Zimbabwe. Food Secur. 9:621–633. doi: 10.1007/s12571-017-0679-x.
  • Ngemakwe, N.P.H., F. Remize, M.L. Thaoge, and D. Sivakumar. 2017. Phytochemical and nutritional properties of underutilised fruits in the Southern African region. S. Afr. J. Bot. 113:137–149. doi: 10.1016/j.sajb.2017.08.006.
  • Nkosi, N.N., T.H.C. Mostert, S. Dzikiti, and N.R. Ntuli. 2020. Prioritization of indigenous fruit tree species with domestication and commercialization potential in KwaZulu-Natal, South Africa. Genet. Resour. Crop Evol. 67(6):1567. doi: 10.1007/s10722-020-00932-5.
  • Paladinić, E., D. Vuletić, I. Martinić, H. Marjanović, K. Indir, M. Benko, and V. Novotny. 2009. Forest biomass and sequestered carbon estimation according to main tree components on the forest stand scale. Period. Biol. 111(4):459–466.
  • Pearson, T., and S. Brown. 2005. Guide de mesure et de suivi du carbone dans les forêts et prairies herbeuses, p. 11–35. Unpublished. This is an online report from the Winrock International Agency. Ecosystem Services Unit of Winrock International, Arlington, TX. <https://carpe.umd.edu/sites/default/files/documentsarchive/guide_mesure_carbone_winrock2005.pdf>. Accesssed 2 Feb. 2021.
  • Pérez-Piqueres, A., B. Martínez-Alcántara, I. Rodríguez-Carretero, R. Canet, and A. Quiñones. 2020. Estimating carbon fixation in fruit crops. p. 67–76. In: A.K. Srivastava and C. Hu, eds. Diagnosis and management of nutrient constraints. Fruit crops, 2020. Elsevier, Amsterdam, Netherlands.
  • Peters, R.H., S. Cloutier, D. Dubé, A. Evans, P. Hastings, H. Kaiser, D. Kohn, and B. Sarwer-Foner. 1988. The Allometry of the Weight of Fruit on Trees and Shrubs in Barbados. Oecologia 74(4):612–616. doi: 10.1007/BF00380061.
  • Picard, N., L. Saint-André, and M. Henry. 2012. Manuel de construction d’équations allométriques pour l’estimation du volume et la biomasse des arbres: De la mesure de terrain à la prédiction. CIRAD-FAO, France, Montpellier.
  • R DEVELOPMENT CORE TEAM. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Razzaq, A., G. Hussain, A. Rasul, J. Xu, Q. Zhang, S.A. Malik, H. Anwar, N. Aziz, N. Braidy, J.L.G. De Aguilar, et al. 2020. Strychnos nux-vomica L. seed preparation promotes functional recovery and attenuates oxidative stress in a mouse model of sciatic nerve crush injury. Complement. Med. Therapies. 20(1):1–11.
  • Rodrigues, S., E.S. de Brito, and E.O. Silva. 2018. Maboque/Monkey Orange–Strychnos spinosa, p. 293–296. In: S. Rodrigues, E.S. de Brito, and E.O. Silva, eds. Exotic fruits. Academic Press, Cambridge, MA: reference guide.
  • Rondeux, J. 1999. La mesure des arbres et des peuplements forestiers. 2nd ed. Les Presses Agronomiques de Gembloux, Belgique, Gembloux.
  • Ryan, C.M., M. Williams, and J. Grace. 2011. Above- and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique. Biotropica 43(4):423–432. doi: 10.1111/j.1744-7429.2010.00713.x.
  • Salmona, J., M. Banks, T.N. Ralantoharijaona, E. Rasolondraibe, R. Zaranaina, A. Rakotonanahary, S. Wohlhauser, B.J. Sewal, and L. Chikhi. 2015. The value of the spineless monkey Orange tree (Strychnos madagascariensis) for conservation of northern sportive lemurs (Lepi lemurmilanoii and L. ankaranensis). Madag. Conserv. Dev. 10(2):53–59. doi: 10.4314/mcd.v10i2.3.
  • Saya, J.M., E. Ruijter, and R.V.A. Orru. 2019. Total Synthesis of Aspidosperma and Strychnos Alkaloids through Indole Dearomatization. Chem. Eur. J. 25(38):8916–8935. doi: 10.1002/chem.201901130.
  • Semenov, V.A., D.O. Samultsev, and L.B. Krivdin. 2020. 1H and 13C NMR spectra of Strychnos alkaloids: Selected NMR updates. Int. J. Quantum Chem. 120(19):1–17. doi: 10.1002/qua.26348.
  • Shai, K.N., K. Ncama, P.T. Ndhlovu, M. Struwig, and A.O. Aremu. 2020. An Exploratory Study on the Diverse Uses and Benefits of Locally-Sourced Fruit Species in Three Villages of Mpumalanga Province, South Africa. Foods. 9:11. doi: 10.3390/foods9111581.
  • Sitrit, Y., S. Loison, R. Ninio, E. Dishon, E. Bar, E. Lewinsohn, and Y. Mizrahi. 2003. Characterization of monkey Orange (Strychnos spinosa Lam.), a potential new crop for arid regions. J. Agric. Food Chem. 51(21):6256–6260. doi: 10.1021/jf030289e.
  • Socha, J., and P. Wezyk. 2007. Allometric equations for estimating the foliage biomass of Scots pine. Eur. J. For. 126:263–270.
  • Sofo, A., V. Nuzzo, A.M. Palese, C. Xiloyannis, G. Celano, P. Zukowskyj, and B. Dichio. 2005. Net CO2 storage in Mediterranean olive and peach orchards. Sci. Hortic. 107:17–24. doi: 10.1016/j.scienta.2005.06.001.
  • Steinman,A.D., G.A. Lamberti, P.R. Leavitt, and D.G.Uzarski. 2017. Biomass and pigments of Benthic Algae, p. 223–241. In: F.R. Hauer and G.A. Lamberti,eds. Methods in stream ecology. Vol. 1, 3rd ed. Academic Press, Cambridge, MA.
  • Sulieman, A.M.E., and A.A. Mariod. 2019. Domestication of indigenous fruit trees, p. 59–81. In: A. Mariod, ed. Wild fruits: Composition, nutritional value and products. Springer, Cham.
  • Van Rayne, K.K., O.A. Adebo, and N.Z. Ngobese. 2020. Nutritional and Physicochemical Characterization of Strychnos madagascariensis Poir (Black Monkey Orange) Seeds as a Potential Food Source. Foods 9(1060):1060. doi: 10.3390/foods9081060.
  • Vieilledent, G., R. Vaudry, S.F. Andriamanohisoa, O.S. Rakotonarivo, and H.Z. Randrianasolo. 2012. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol. Appl. 22(2):572–583. doi: 10.1890/11-0039.1.
  • Wibbe, M.L., M.M. Blanke, and F. Lenz. 1993. Effect of fruiting on carbon budgets of apple tree canopies. Trees – Struct. Funct. 8:56–60. doi: 10.1007/BF00240982.
  • Wu, T., Y. Wang, C. Yu, R. Chiarawipa, X. Zhang, Z. Han, and L. Wu. 2012. Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example. PLoS ONE 7(6):e38883. doi: 10.1371/journal.pone.0038883.