1,668
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Shading Reduces Water Deficits in Strawberry (Fragaria X Ananassa) Plants during Vegetative Growth

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahemd, H.A., A.A. Al-Faraj, and A.M. Abdel-Ghany. 2016. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 201:36–45. doi:10.1016/j.scienta.2016.01.030.
  • Álvarez, S., A. Navarro, E. Nicolás, and M.J. Sánchez-Blanco. 2011. Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in callistemon plants during drought conditions. Sci. Hortic. 129(2):306–312. doi: 10.1016/j.scienta.2011.03.031.
  • Awang, Y.B., and J.G. Atherton. 1994. Salinity and shading effects on leaf water relations and ionic composition of strawberry plants grown on rockwool. J. Hortic. Sci. 69(2):377–383. doi: 10.1080/14620316.1994.11516467.
  • Baker, N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59(1):89–113. doi: 10.1146/annurev.arplant.59.032607.092759.
  • Blanke, M.M., and D.T. Cooke. 2004. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regul. 42(2):153–160. doi: 10.1023/B:GROW.0000017489.21970.d4.
  • Casierra-Posada, F., J.E. Peña-Olmos, and C. Ulrichs. 2012. Basic growth analysis in strawberry plants (Fragaria sp.) exposed to different radiation environments. Agron. Colomb. 30(1):25–33.
  • Choi, H.G., B.Y. Moon, and N.J. Kang. 2016. Correlation between strawberry (Fragaria ×ananassa Duch.) productivity and photosynthesis-related parameters under various growth conditions. Front. Plant Sci. 7:1607. doi:10.3389/fpls.2016.01607.
  • Choi, H.G., B.Y. Moon, N.J. Kang, J.K. Kwon, K. Bekhzod, K.S. Park, and S.Y. Lee. 2014. Yield loss and quality degradation of strawberry fruits cultivated under the deficient insolation conditions by shading. Hortic. Environ. Biotechnol. 55(4):263–270. doi: 10.1007/s13580-014-0039-0.
  • Duan, R., M. Huang, Z. Wang, Z. Zhang, and W. Fan. 2013. Effects of shading stress and light recovery on the photosynthesis characteristic and chlorophyll fluorescence characteristic of Fragaria ananassa Duch. cv. Toyonoka. Adv. J. Food Sci. Technol. 5(6):787–792. doi: 10.19026/ajfst.5.3164.
  • El-Farhan, A., and M. Pritts. 1997. Water requirements and water stress in strawberry. Adv. in Strawberry Res. 16(1):5–12.
  • Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress: Effects, mechanisms, and management. Agron. Sustain. Dev. 29:185–212. doi:10.1051/agro:2008021.
  • Ferreira, J.F.S., X. Liu, and D.L. Suarez. 2019. Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity Stress. Sci. Hortic. 243:401–410. doi:10.1016/j.scienta.2018.07.016.
  • Fierascu, R.C., G. Temocico, I. Fierascu, A. Ortan, and N.E. Babeanu. 2020. Fragaria genus: Chemical composition and biological activities. Molecules 25(3):498. doi: 10.3390/molecules25030498.
  • Galmés, J., J.M. Ochogavía, J. Gago, E.J. Roldán, J. Cifre, and M.À. Conesa. 2013. Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: Anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ. 36(5):920–935. doi: 10.1111/pce.12022.
  • García-Tejero, I.F., D. López-Borrallo, L. Miranda, J.J. Medina, J. Arriaga, J.L. Muriel-Fernández, and E. Martínez-Ferri. 2018. Estimating strawberry crop coefficients under plastic tunnels in Southern Spain by using drainage lysimeters. Sci. Hortic. 231:233–240. doi:10.1016/j.scienta.2017.12.020.
  • Gerardin, T., C. Douthe, J. Flexas, and O. Brendel. 2018. Shade and drought growth conditions strongly impact dynamic responses of stomata to variations in irradiance in Nicotiana Tabacum. Environ. Exp. Bot. 153:188–197. bot.2018.05.019 doi:10.1016/j.envexp.
  • Ghaderi, N., S. Normohammadi, and T. Javadi. 2015. Morpho-physiological responses of strawberry (Fragaria ×ananassa) to exogenous salicylic acid application under drought stress. J Agric. Sci. Techol. 17(1):167–178.
  • Grant, O., C. James, P. Dodds, and N. Šurbanovski. 2009. Carbon isotope composition indicates improved photosynthesis water use efficiency of strawberry plant under deficit irrigation. Acta Hortic. 889:397–402. doi:10.17660/ActaHortic.2011.889.49.
  • Grant, O.M., M.J. Davies, A.W. Johnson, and D.W. Simpson. 2012. Physiological and growth responses to water deficits in cultivated strawberry (Fragaria ×ananassa) and in one of its progenitors, Fragaria chiloensis. Environ. Exp. Bot. 83:23–32. doi:10.1016/j.envexpbot.2012.04.004.
  • Grant, O.M., A.W. Johnson, M.J. Davies, C.M. James, and D.W. Simpson. 2010. Physiological and morphological diversity of cultivated strawberry (Fragaria ×ananassa) in response to water deficit. Environ. Exp. Bot. 68(3):264–272. doi: 10.1016/j.envexpbot.2010.01.008.
  • Grant, O.M., Ł. Tronina, J.I. García-Plazaola, R. Esteban, J.S. Pereira, and M. Manuela Chaves. 2015. Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. Funct. Plant Biol. 42(2):219–228. doi: 10.1071/FP14081.
  • Grijalba, C.M., M.M. Pérez-Trujillo, D. Ruiz, and A.M. Ferrucho. 2015. Strawberry yields with high-tunnel and open-field cultivations and the relationship with vegetative and reproductive plant characteristics. Agron. Colomb. 33(2):147–154. doi: 10.15446/agron.colomb.v33n2.52000.
  • Gulen, H., and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166(3):739–744. doi: 10.1016/j.plantsci.2003.11.014.
  • Gulen, H., M. Kesici, C. Cetinkaya, and S. Ergin. 2018. Proline and antioxidant enzyme activities in some strawberry cultivars under drought and recovery. Not. Bot. Horti. Agrobot. Cluj. Napoca. 46(2):570–578. doi: 10.15835/nbha46211077.
  • Hasegawa, P.M., R.A. Bressan, J.-K. Zhu, and H. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Plant Mol. Biol. 51(4):63–99.
  • Holmgren, M., L. Gómez-Aparicio, J.L. Quero, and F. Valladares. 2012. Non-linear effects of drought under shade: Reconciling physiological and ecological models in plant communities. Oecologia 169(2):293–305. doi: 10.1007/s00442-011-2196-5.
  • Jurik, T.W., J.F. Chabot, and B.F. Chabot. 1982. Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol. 70(4):1044–1048. doi: 10.1104/pp.70.4.1044.
  • Kadir, S., and G. Sidhu. 2006. Strawberry (Fragaria ×ananassa Duch.) growth and productivity as affected by temperature. Hort. Sci. 41(6):1423–1430.
  • Kirschbaum, D.S., K.D. Larson, S.A. Weinbaum, and T.M. Dejong. 2010. Relationships of carbohydrate and nitrogen content with strawberry transplant vigor and fruiting pattern in annual production systems. Amer. J. Plant Sci. Biotechol. 4( special issue):98–103.
  • Klamkowski, K., and W. Treder. 2006. Morphological and physiological responses of strawberry plants to water stress. Agric. Conspec. Sci. 71(4):159–165.
  • Klamkowski, K., and W. Treder. 2008. Response to drought stress of three strawberry cultivars grown under greenhouse conditions. J. Fruit Ornam. Plant Res. 16:179–188.
  • Klamkowski, K., W. Treder, and K. Wójcik. 2015. Effects of long-term water stress on leaf gas exchange, growth and yield of three strawberry cultivars. Acta Sci. Pol. Hortorum Cultus. 14(6):55–65.
  • Koester, R.P., B.M. Nohl, B.W. Diers, and E.A. Ainsworth. 2016. Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. Plant Cell and Environ. 39(5):1058–1067. doi: 10.1111/pce.12675.
  • Kumar, S., and B. Singh. 2009. Effect of water stress on carbon isotope discrimination and rubisco activity in bread and durum wheat genotypes. Physiol. Mol. Biol. Plants 15(3):281–286. doi: 10.1007/s12298-009-0032-8.
  • Leng, G., and J. Hall. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 654:811–821. doi:10.1016/j.scitotenv.2018.10.434.
  • Li, T., L.N. Liu, C.D. Jiang, Y.J. Liu, and L. Shi. 2014. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J. Photochem. Photobiol. B 137:31–38. doi:10.1016/j.jphotobiol.2014.04.022.
  • Liu, F., S. Savić, C.R. Jensen, A. Shahnazari, S.E. Jacobsen, R. Stikić, and M.N. Andersen. 2007. Water relations and yield of lysimeter-grown strawberries under limited irrigation. Sci. Hortic. 111(2):128–132. doi: 10.1016/j.scienta.2006.10.006.
  • Lobell, D.B., M.J. Roberts, W. Schlenker, N. Braun, B.B. Little, R.M. Rejesus, and G.L. Hammer. 2014. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Sci. 344(6183):516–519. doi: 10.1126/science.1251423.
  • Luo, H., L. Feng, M. Li, and L. Zhang. 2012. Effects of shading on the chlorophyll fluorescence parameters of Fragaria vesca cv. ‘Selva’ and ‘Midlight. J. Hebei Agric. Univ. 35(5):25–28.
  • Ma, P., T.H. Bai, X.Q. Wang, and F.W. Ma. 2015. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought. J. Integr. Agric. 14(9):1755–1766. doi: 10.1016/S2095-3119(15)61148-0.
  • Martínez-Ferri, E., C. Soria, M.T. Ariza, J.J. Medina, L. Miranda, P. Domíguez, and J.L. Muriel. 2016. Water relations, growth and physiological response of seven strawberry cultivars (Fragaria ×ananassa Duch.) to different water availability. Agric. Water Manage. 164:73–82. doi:10.1016/j.agwat.2015.08.014.
  • Martin-StPaul, N., S. Delzon, and H. Cochard. 2017. Plant resistance to drought depends on timely stomatal closure. Ecol. Letters 20(11):1437–1447. doi: 10.1111/ele.12851.
  • Mauro, R.P., A. Occhipinti, A.M.G. Longo, and G. Mauromicale. 2011. Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover. J. Agron. Crop. Sci. 197(1):57–66. doi: 10.1111/j.1439-037X.2010.00436.x.
  • McDonald, S., and D. Archbold. 1998. Membrane competence among and within Fragaria species varies in response to dehydration stress. J. Am. Soc. Hortic. Sci. 123(5):808–813. doi: 10.21273/JASHS.123.5.808.
  • Mditshwa, A., L. Magwaza, and S. Tesfay. 2019. Shade netting on subtropical fruit: Effect on environmental conditions, tree physiology and fruit quality. Sci. Hortic. 256(1):108556. doi: 10.1016/j.scienta.2019.108556.
  • Medrano, H., M. Tomás, S. Martorell, J. Flexas, E. Hernández, J. Rosselló, A. Pou, J. Escalona, and J. Bota. 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 3(3):220–228. doi: 10.1016/j.cj.2015.04.002.
  • Mo, X., S. Hu, Z. Lin, S. Liu, and J. Xia. 2017. Impacts of climate change on agricultural water resources and adaptation on the north China plain. Adv. Clim. Chang. 8(2):93–98. doi: 10.1016/j.accre.2017.05.007.
  • Montanaro, G., B. Dichio, and C. Xiloyannis. 2009. Shade mitigates photoinhibition and enhances water use efficiency in kiwifruit under drought. Photosynthetica 47(3):363–371. doi: 10.1007/s11099-009-0057-9.
  • Mott, K.A. 1988. Do stomata respond to co2 concentrations other than intercellular? Plant Physiol. 86(1):200–203. doi: 10.1104/pp.86.1.200.
  • Munné-Bosch, S., and J. Peñuelas. 2004. Drought-induced oxidative stress in strawberry tree (Arbutus unedo l.) growing in Mediterranean field conditions. Plant Sci. 166(4):1105–1110. doi: 10.1016/j.plantsci.2003.12.034.
  • Na, Y., H.J. Jeong, S. Lee, H.G. Choi, S. Kim, and I.R. Rho. 2014. Wild and cultivated strawberry species chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Hortic. Environ. Biotechnol. 55(4):280–286. doi: 10.1007/s13580-014-0006-9.
  • Neri, D., G. Baruzzi, F. Massetani, and W. Faedi. 2012. Strawberry production in forced and protected culture in Europe as a response to climate change. Can. J. Plant Sci. 92(6):1021–1036. doi: 10.4141/CJPS2011-276.
  • Nguyen, T.P.D., T.T.H. Tran, and Q.T. Nguyen. 2019. Effects of light intensity on the growth, photosynthesis and leaf microstructure of hydroponic cultivated spinach (Spinacia oleracea l.) under a combination of red and blue LEDs in house. Int. J. Agric. Technol. 15(1):75–90.
  • Nicolás, E., A. Torrecillas, J. Dell Amico, and J.J. Alarcón. 2005. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. J. Plant Physiol. 162(4):439–447. doi: 10.1016/j.jplph.2004.05.014.
  • O’Neill, S.D. 1983. Role of osmotic potential gradients during water stress and leaf senescence in Fragaria virginiana. Plant Physiol. 72(4):931–937. doi: 10.1104/pp.72.4.931.
  • OECD. 2014. Climate change, water and agriculture: Towards resilient systems. OECD Studies on Water. OECD Publishing, doi:10.1787/9789264209138-en.
  • Onwueme, I.C., and M. Johnston. 2000. Influence of shade on stomatal density, leaf size and other leaf characteristics in the major tropical root crops, tannia, sweet potato, yam, cassava and taro. Exp. Agric. 36(4):509–516. doi: 10.1017/S0014479700001071.
  • Osakabe, Y., K. Osakabe, K. Shinozaki, and L.-S.P. Tran. 2014. Response of plants to water. Front. Plant Sci. 5:86. doi:10.3389/fpls.2014.00086/abstract.
  • Qiu, T., Y. Wu, Z. Shen, Y. Wu, D. Lu, and J. He. 2018. Effects of shading on leaf physiology and morphology in the “Yinhong” grape plants. Rev. Bras. Frutic. 40(5):1–10. doi: 10.1590/0100-29452018037.
  • Razavi, F., B. Pollet, K. Steppe, and M.C. Van Labeke. 2008. Chlorophyll fluorescence as a tool for evaluation of drought stress in strawberry. Photosynthetica 46(4):631–633. doi: 10.1007/s11099-008-0108-7.
  • Roiloa, S.R., and R. Rutuerto. 2007. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environ. Exp. Bot. 61:1–9. doi:10.1016/j.envexpbot.2007.02.006.
  • Russo, M., and B. Honermeier. 2017. Effect of shading on leaf yield, plant parameters, and essential oil content of lemon balm (Melissa officinalis l.). J. Appl. Res. Med. Aromat. Plants 7:27–34. doi:10.1016/j.jarmap.2017.04.003.
  • Sánchez-Blanco, M.J., S. Álvarez, A. Navarro, and S. Bañón. 2009. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J. Plant Physiol. 166(5):467–476. doi: 10.1016/j.jplph.2008.06.015.
  • Sofo, A., B. Dichio, G. Montanaro, and C. Xiloyannis. 2009. Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering. Agric. Water Manage. 96(8):1201–1206. doi: 10.1016/j.agwat.2009.03.004.
  • Sun, C.H., X.H. Li, Y.L. Hu, P. Zhao, T. Xu, J. Sun, and X.L. Gao. 2015. Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants. Korean J. Hortic. Sci. Technol. 33(5):625–632. doi: 10.7235/hort.2015.15054.
  • Tabatabaei, S.J., M. Yusefi, and J. Hajiloo. 2008. Effects of shading and no3:nh4 ratio on the yield, quality and N metabolism in strawberry. Sci. Hortic. 116(3):264–272. doi: 10.1016/j.scienta.2007.12.008.
  • Tagliavini, M., E. Baldi, P. Lucchi, M. Antonelli, G. Sorrenti, G. Baruzzi, and W. Faedi. 2005. Dynamics of nutrients uptake by strawberry plants (Fragaria ×ananassa Dutch.) grown in soil and soilless culture. Europ. J. Agron. 23:5–25. doi:10.1016/j.eja.2004.09.002.
  • Yordanov, I.T., V. Velikova, and T. Tsonev. 2000. Plant responses to drought and stress. Photosynthetica 38(1):171–186. doi: 10.1023/A:1007201411474.
  • Zeng, X., X. Feng, F. Xiang, Z. Song, J. Wu, R. Wu, and Y. Gu. 2010. Effects of shading on photosynthesis of strawberry. J. Hebei Agric. Univ. 49(11):2811–2814. doi: 10.14088/j.cnki.0439-8114.2010.11.054.
  • Zhang, Y.J., F. Yan, H. Gao, Y.Z. Xu, Y.Y. Guo, E.J. Wang, Y.H. Li, and Z.K. Xie. 2015. Chlorophyll content, leaf gas exchange and growth of oriental lily as affected by shading. Rus. J. Plant Physiol. 62(3):334–339. doi: 10.1134/S1021443715030206.