2,122
Views
31
CrossRef citations to date
0
Altmetric
Basic Research Paper

Autophagy of metallothioneins prevents TNF-induced oxidative stress and toxicity in hepatoma cells

, , , , , & show all
Pages 2184-2198 | Received 02 Apr 2013, Accepted 06 Oct 2015, Published online: 06 Jan 2016

References

  • Bradley JR. TNF-mediated inflammatory disease. J Pathol 2008; 214:149-60; PMID:18161752; http://dx.doi.org/10.1002/path.2287
  • Schwabe RF, Brenner DA. Mechanisms of liver injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006; 290:G583-G589; PMID:16537970; http://dx.doi.org/10.1152/ajpgi.00422.2005
  • Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83:793-802; PMID:8521496; http://dx.doi.org/10.1016/0092-8674(95)90192-2
  • Rodriguez M, Cabal-Hierro L, Carcedo MT, Iglesias JM, Artime N, Darnay BG, Lazo PS. NF-kB signal triggering and termination by tumor necrosis factor receptor 2. J Biol Chem 2011; 286:22814-24; PMID:21558270; http://dx.doi.org/10.1074/jbc.M111.225631
  • Tartaglia LA, Pennica D, Goeddel DV. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 1993; 268:18542-8; PMID:8395508
  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17:1675-87; PMID:9501089; http://dx.doi.org/10.1093/emboj/17.6.1675
  • Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2:589-98; PMID:11483992; http://dx.doi.org/10.1038/35085008
  • Lockshin RA, Zakeri Z. Caspase-independent cell deaths. Curr Opin Cell Biol 2002; 14:727-33; PMID:12473346; http://dx.doi.org/10.1016/S0955-0674(02)00383-6
  • Alessenko AV, Boikov PY, Filippova GN, Khrenov AV, Loginov AS, Makarieva ED. Mechanisms of cycloheximide-induced apoptosis in liver cells. FEBS Lett 1997; 416:113-6; PMID:9369245; http://dx.doi.org/10.1016/S0014-5793(97)01161-7
  • Duriez PJ, Wong F, Dorovini-Zis K, Shahidi R, Karsan A. A1 functions at the mitochondria to delay endothelial apoptosis in response to tumor necrosis factor. J Biol Chem 2000; 275:18099-107; PMID:10849436; http://dx.doi.org/10.1074/jbc.M908925199
  • Lüschen S, Ussat S, Scherer G, Kabelitz D, Adam-Klages S. Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J Biol Chem 2000; 275:24670-8; PMID:10827087; http://dx.doi.org/10.1074/jbc.M003280200
  • Warren S, Torti SV, Torti FM. The role of iron in the cytotoxicity of tumor necrosis factor. Lymphokine Cytokine Res 1993; 12:75-80; PMID:8324080
  • Jones BE, Lo CR, Liu H, Srinivasan A, Streetz K, Valentino KL, Czaja MJ. Hepatocytes sensitized to tumor necrosis factor-α cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. J Biol Chem 2000; 275:705-12; PMID:10617670; http://dx.doi.org/10.1074/jbc.275.1.705
  • Monney L, Olivier R, Otter I, Jansen B, Poirier GG, Borner C. Role of an acidic compartment in tumor-necrosis-factor-α-induced production of ceramide, activation of caspase-3 and apoptosis. Eur J Biochem 1998; 251:295-303; PMID:9492297; http://dx.doi.org/10.1046/j.1432-1327.1998.2510295.x
  • Werneburg N, Guicciardi ME, Yin XM, Gores GJ. TNF-α-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 2004; 287:G436-G443; PMID:15075251; http://dx.doi.org/10.1152/ajpgi.00019.2004
  • Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005; 5:886-97; PMID:16239905; http://dx.doi.org/10.1038/nrc1738
  • Terman A, Kurz T. Lysosomal iron, iron chelation and cell death. Antioxid Redox Signal 2013; 18:888-98; PMID:22909065; http://dx.doi.org/10.1089/ars.2012.4885
  • Terman A, Kurz T, Gustafsson B, Brunk UT. Lysosomal labilization. IUBMB Life 2006; 58:531-9; PMID:17002981; http://dx.doi.org/10.1080/15216540600904885
  • Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med 2011; 50:1647-58; PMID:21419217; http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.014
  • Kurz T, Brunk UT. Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form. Autophagy 2009; 5:93-5; PMID:18989099; http://dx.doi.org/10.4161/auto.5.1.7248
  • Gyrd-Hansen M, Nylandsted J, Jäättelä M. Heat shock protein 70 promotes cancer cell viability by safeguarding lysosomal integrity. Cell Cycle 2004; 3:1484-5; PMID:15539949; http://dx.doi.org/10.4161/cc.3.12.1287
  • Autelli R, Crepaldi S, De Stefanis D, Parola M, Bonelli G, Baccino FM. Intracellular free iron and acidic pathways mediate TNF-induced death of rat hepatoma cells. Apoptosis 2005; 10:777-86; PMID:16133868; http://dx.doi.org/10.1007/s10495-005-2944-2
  • Autelli R, Ullio C, Prigione E, Crepaldi S, Schiavone N, Brunk UT, Capaccioli S, Baccino FM, Bonelli G. Divergent pathways for TNF and C(2)-ceramide toxicity in HTC hepatoma cells. Biochim Biophys Acta 2009; 1793:1182-90; PMID:19328214; http://dx.doi.org/10.1016/j.bbamcr.2009.03.005
  • Ullio C, Casas J, Brunk UT, Sala G, Fabriàs G, Ghidoni R, Bonelli G, Baccino FM, Autelli R. Sphingosine mediates TNFalpha-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells. J Lipid Res 2012; 53:1134-43; PMID:22454477; http://dx.doi.org/10.1194/jlr.M022384
  • Yu Z, Persson HL, Eaton JW, Brunk UT. Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med 2003; 34:1243-52; PMID:12726912; http://dx.doi.org/10.1016/S0891-5849(03)00109-6
  • Zhao M, Eaton JW, Brunk UT. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett 2000; 485:104-8; PMID:11094149; http://dx.doi.org/10.1016/S0014-5793(00)02195-5
  • Karlsson M, Kurz T, Brunk UT, Nilsson SE, Frennesson CI. What does the commonly used DCF test for oxidative stress really show? Biochem J 2010; 428:183-90; PMID:20331437; http://dx.doi.org/10.1042/BJ20100208
  • Øverbye A, Sætre F, Hagen LK, Johansen HT, Seglen PO. Autophagic activity measured in whole rat hepatocytes as the accumulation of a novel BHMT fragment (p10), generated in amphisomes by the asparaginyl proteinase, legumain. Autophagy 2011; 7:1011-27; http://dx.doi.org/10.4161/auto.7.9.16436
  • Baird SK, Kurz T, Brunk UT. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 2006; 394:275-83; PMID:16236025; http://dx.doi.org/10.1042/BJ20051143
  • Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 2000; 59:95-104; PMID:10605938; http://dx.doi.org/10.1016/S0006-2952(99)00301-9
  • Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 2013; 9:1491-9; PMID:23884233; http://dx.doi.org/10.4161/auto.25529
  • Eng KE, Panas MD, Karlsson Hedestam GB, McInerney GM. A novel quantitative flow cytometry-based assay for autophagy. Autophagy 2010; 6:634-41; PMID:20458170; http://dx.doi.org/10.4161/auto.6.5.12112
  • Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation: a question of life or death. J Biochem Mol Biol 2002; 35:28-40.; PMID:16248967; http://dx.doi.org/10.5483/BMBRep.2002.35.1.028
  • Vandenabeele P, Galluzzi L, Vanden BT, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11:700-14; PMID:20823910; http://dx.doi.org/10.1038/nrm2970
  • Chipuk JE, Green DR. Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 2005; 6:268-75; PMID:15714200; http://dx.doi.org/10.1038/nrm1573
  • Wilson CA, Browning JL. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ 2002; 9:1321-33; PMID:12478469; http://dx.doi.org/10.1038/sj.cdd.4401107
  • Dada LA, Sznajder JI. Mitochondrial Ca(2)+ and ROS take center stage to orchestrate TNF-α-mediated inflammatory responses. J Clin Invest 2011; 121:1683-5; PMID:21519140; http://dx.doi.org/10.1172/JCI57748
  • Kim JJ, Lee SB, Park JK, Yoo YD. TNF-α-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ 2010; 17:1420-34; PMID:20203691; http://dx.doi.org/10.1038/cdd.2010.19
  • Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Okumura K, Doi T, et al. NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 2003; 22:3898-909; PMID:12881424; http://dx.doi.org/10.1093/emboj/cdg379
  • Lloyd JB, Cable H, Rice-Evans C. Evidence that desferrioxamine cannot enter cells by passive diffusion. Biochem Pharmacol 1991; 41:1361-3; PMID:2018567; http://dx.doi.org/10.1016/0006-2952(91)90109-I
  • Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97; PMID:21907822; http://dx.doi.org/10.1016/j.biocel.2011.08.016
  • Levi S, Rovida E. The role of iron in mitochondrial function. Biochim Biophys Acta 2009; 1790:629-36; PMID:18948172; http://dx.doi.org/10.1016/j.bbagen.2008.09.008
  • Brunk UT, Neuzil J, Eaton JW. Lysosomal involvement in apoptosis. Redox Rep 2001; 6:91-7; PMID:11450988; http://dx.doi.org/10.1179/135100001101536094
  • Persson HL, Nilsson KJ, Brunk UT. Novel cellular defenses against iron and oxidation: ferritin and autophagocytosis preserve lysosomal stability in airway epithelium. Redox Rep 2001; 6:57-63; PMID:11333118; http://dx.doi.org/10.1179/135100001101536049
  • Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 2007; 26:675-87; PMID:17560373; http://dx.doi.org/10.1016/j.molcel.2007.04.021
  • Basuroy S, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 2009; 296:C422-C432; PMID:19118162; http://dx.doi.org/10.1152/ajpcell.00381.2008
  • Chen CS. Phorbol ester induces elevated oxidative activity and alkalization in a subset of lysosomes. BMC Cell Biol 2002; 3:21-32; PMID:12165102; http://dx.doi.org/10.1186/1471-2121-3-21
  • Droga-Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J Biol Chem 2008; 283:19140-50; PMID:18469004; http://dx.doi.org/10.1074/jbc.M802513200
  • Nilsson E, Ghassemifar R, Brunk UT. Lysosomal heterogeneity between and within cells with respect to resistance against oxidative stress. Histochem J 1997; 29:857-65; PMID:9466153; http://dx.doi.org/10.1023/A:1026441907803
  • Czaja MJ. Two types of autophagy are better than one during hepatocyte oxidative stress. Autophagy 2011; 7:96-7; PMID:20980820; http://dx.doi.org/10.4161/auto.7.1.13885
  • Lv XC, Zhou HY. Resveratrol protects H9c2 embryonic rat heart derived cells from oxidative stress by inducing autophagy: role of p38 mitogen-activated protein kinase. Can J Physiol Pharmacol 2012; 90:655-62; PMID:22537597; http://dx.doi.org/10.1139/y2012-051
  • Marino ML, Fais S, Djavaheri-Mergny M, Villa A, Meschini S, Lozupone F, Venturi G, Della Mina P, Pattingre S, Rivoltini L, et al. Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death Dis 2010; 1:e87; PMID:21368860; http://dx.doi.org/10.1038/cddis.2010.67
  • Chiaverini N, De Ley M. Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 2010; 44:605-13; PMID:20380594; http://dx.doi.org/10.3109/10715761003692511
  • Lu H, Hunt DM, Ganti R, Davis A, Dutt K, Alam J, Hunt RC. Metallothionein protects retinal pigment epithelial cells against apoptosis and oxidative stress. Exp Eye Res 2002; 74:83-92; PMID:11878821; http://dx.doi.org/10.1006/exer.2001.1101
  • Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol 2011; 28:767-77; PMID:21624509; http://dx.doi.org/10.1016/j.nbt.2011.05.003
  • You HJ, Lee KJ, Jeong HG. Overexpression of human metallothionein-III prevents hydrogen peroxide-induced oxidative stress in human fibroblasts. FEBS Lett 2002; 521:175-9; PMID:12067712; http://dx.doi.org/10.1016/S0014-5793(02)02870-3
  • Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 2010; 3:30-8; PMID:20974010; http://dx.doi.org/10.1186/1756-6606-3-30
  • Pedersen MØ, Larsen A, Stoltenberg M, Penkowa M. The role of metallothionein in oncogenesis and cancer prognosis. Prog Histochem Cytochem 2009; 44:29-64; PMID:19348910; http://dx.doi.org/10.1016/j.proghi.2008.10.001
  • Choudhuri S, McKim JM, Jr, Klaassen CD. Role of hepatic lysosomes in the degradation of metallothionein. Toxicol Appl Pharmacol 1992; 115:64-71; PMID:1631896; http://dx.doi.org/10.1016/0041-008X(92)90368-3
  • Klaassen CD, Choudhuri S, McKim JM, Jr, Lehman-McKeeman LD, Kershaw WC. In vitro and in vivo studies on the degradation of metallothionein. Environ Health Perspect 1994; 102 Suppl 3:141-6; PMID:7843089; http://dx.doi.org/10.1289/ehp.94102s3141
  • Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3:452-60; PMID:17534139; http://dx.doi.org/10.4161/auto.4451
  • Porter K, Nallathambi J, Lin Y, Liton PB. Lysosomal basification and decreased autophagic flux in oxidatively stressed trabecular meshwork cells: implications for glaucoma pathogenesis. Autophagy 2013; 9:581-94; PMID:23360789; http://dx.doi.org/10.4161/auto.23568
  • Chu CT, Plowey ED, Dagda RK, Hickey RW, Cherra SJ, III, Clark RS. Autophagy in neurite injury and neurodegeneration: in vitro and in vivo models. Methods Enzymol 2009; 453:217-49; PMID:19216909; http://dx.doi.org/10.1016/S0076-6879(08)04011-1
  • Bolte S, Cordelieres FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 2006; 224:213-32; PMID:17210054; http://dx.doi.org/10.1111/j.1365-2818.2006.01706.x
  • Urani C, Melchioretto P, Gribaldo L. Regulation of metallothioneins and ZnT-1 transporter expression in human hepatoma cells HepG2 exposed to zinc and cadmium. Toxicol In Vitro 2010; 24:370-4; PMID:19900532; http://dx.doi.org/10.1016/j.tiv.2009.11.003
  • Mizzen CA, Cartel NJ, Yu WH, Fraser PE, McLachlan DR. Sensitive detection of metallothioneins-1, -2 and -3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention. J Biochem Biophys Meth 1996; 32:77-83; PMID:8796480; http://dx.doi.org/10.1016/0165-022X(95)00044-R

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.