3,743
Views
45
CrossRef citations to date
0
Altmetric
Review

Autophagy interaction with herpes simplex virus type-1 infection

&
Pages 451-459 | Received 19 May 2015, Accepted 01 Jan 2016, Published online: 02 Mar 2016

References

  • Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of herpes simplex virus types 1 and 2–United States, 1999-2010. J Infect Dis 2014; 209:325-33; PMID:24136792; http://dx.doi.org/10.1093/infdis/jit458
  • Xu F, Schillinger JA, Sternberg MR, Johnson RE, Lee FK, Nahmias AJ, Markowitz LE. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988-1994. J Infect Dis 2002; 185:1019-24; PMID:11930310; http://dx.doi.org/10.1086/340041
  • Wilson AC, Mohr I. A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol 2012; 20:604-11; PMID:22963857; http://dx.doi.org/10.1016/j.tim.2012.08.005
  • Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. Clin Infect Dis 1998; 26:541-53; quiz 54-5; PMID:9524821; http://dx.doi.org/10.1086/514600
  • Carbone I, Lazzarotto T, Ianni M, Porcellini E, Forti P, Masliah E, Gabrielli L, Licastro F. Herpes virus in Alzheimer disease: relation to progression of the disease. Neurobiol Aging 2014; 35:122-9; PMID:23916950; http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.024
  • Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer Disease. J Alzheimers Dis 2015; 48:319-53; PMID:26401998; http://dx.doi.org/10.3233/JAD-142853
  • Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer disease amyloid plaques. J Pathol 2009; 217:131-8; PMID:18973185; http://dx.doi.org/10.1002/path.2449
  • Newcomb WW, Juhas RM, Thomsen DR, Homa FL, Burch AD, Weller SK, Brown JC. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 2001; 75:10923-32; PMID:11602732; http://dx.doi.org/10.1128/JVI.75.22.10923-10932.2001
  • Loret S, Guay G, Lippe R. Comprehensive characterization of extracellular herpes simplex virus type 1 virions. J Virol 2008; 82:8605-18; PMID:18596102; http://dx.doi.org/10.1128/JVI.00904-08
  • Esclatine A, Taddeo B, Roizman B. The UL41 protein of herpes simplex virus mediates selective stabilization or degradation of cellular mRNAs. Proc Natl Acad Sci U S A 2004; 101:18165-70; PMID:15596716; http://dx.doi.org/10.1073/pnas.0408272102
  • Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 2003; 28:294-304; PMID:12826401; http://dx.doi.org/10.1016/S0968-0004(03)00088-4
  • Everett RD. ICP0, a regulator of herpes simplex virus during lytic and latent infection. Bioessays 2000; 22:761-70; PMID:10918307; http://dx.doi.org/10.1002/1521-1878(200008)22:8%3c761::AID-BIES10%3e3.0.CO;2-A
  • Kalamvoki M, Roizman B. Interwoven roles of cyclin D3 and cdk4 recruited by ICP0 and ICP4 in the expression of herpes simplex virus genes. J Virol 2010; 84:9709-17; PMID:20660182; http://dx.doi.org/10.1128/JVI.01050-10
  • Sinani D, Cordes E, Workman A, Thunuguntia P, Jones C. Stress-induced cellular transcription factors expressed in trigeminal ganglionic neurons stimulate the herpes simplex virus 1 ICP0 promoter. J Virol 2013; 87:13042-7; PMID:24027338; http://dx.doi.org/10.1128/JVI.02476-13
  • Opstelten W, Neven AK, Eekhof J. Treatment and prevention of herpes labialis. Can Fam Physician 2008; 54:1683-7; PMID:19074705
  • Raborn GW, Grace MG. Recurrent herpes simplex labialis: selected therapeutic options. J Can Dent Assoc 2003; 69:498-503; PMID:12954137
  • Preston CM, Efstathiou S. Molecular basis of HSV latency and reactivation. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., eds. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge, 2007.
  • Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J Am Acad Dermatol 2007; 57:737-63; quiz 64-6; PMID:17939933; http://dx.doi.org/10.1016/j.jaad.2007.06.027
  • Roizman B, Whitley RJ. An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol 2013; 67:355-74; PMID:24024635; http://dx.doi.org/10.1146/annurev-micro-092412-155654
  • Whitley RJ. Herpes simplex encephalitis: adolescents and adults. Antiviral Res 2006; 71:141-8; PMID:16675036; http://dx.doi.org/10.1016/j.antiviral.2006.04.002
  • Orvedahl A, Levine B. Autophagy in Mammalian antiviral immunity. Curr Top Microbiol Immunol 2009; 335:267-85; PMID:19802570
  • Shoji-Kawata S, Levine B. Autophagy, antiviral immunity, and viral countermeasures. Biochim Biophys Acta 2009; 1793:1478-84; PMID:19264100; http://dx.doi.org/10.1016/j.bbamcr.2009.02.008
  • Awan MU, Deng Y. Role of autophagy and its significance in cellular homeostasis. Appl Microbiol Biotechnol 2014; 98:5319-28; PMID:24743981; http://dx.doi.org/10.1007/s00253-014-5721-8
  • Klionsky DJ, Cuervo AM, Dunn WA, Jr., Levine B, van der Klei I, Seglen PO. How shall I eat thee? Autophagy 2007; 3:413-6; PMID:17568180; http://dx.doi.org/10.4161/auto.4377
  • Talloczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ, Eskelinen EL, Levine B. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A 2002; 99:190-5; PMID:11756670; http://dx.doi.org/10.1073/pnas.012485299
  • He B, Gross M, Roizman B. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 1997; 94:843-8; PMID:9023344; http://dx.doi.org/10.1073/pnas.94.3.843
  • Chou J, Chen JJ, Gross M, Roizman B. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 α and premature shutoff of protein synthesis after infection with gamma 134.5- mutants of herpes simplex virus 1. Proc Natl Acad Sci U S A 1995; 92:10516-20; PMID:7479831; http://dx.doi.org/10.1073/pnas.92.23.10516
  • Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007; 1:23-35; PMID:18005679; http://dx.doi.org/10.1016/j.chom.2006.12.001
  • Talloczy Z, Virgin HWt, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2006; 2:24-9; PMID:16874088; http://dx.doi.org/10.4161/auto.2176
  • Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA. An analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol 2007; 81(22):12128-34.
  • Yakoub AM, Shukla D. Herpes Simplex Virus-1 Fine-Tunes Host's Autophagic Response to Infection: A Comprehensive Analysis in Productive Infection Models. PLoS One 2015; 10:e0124646; PMID:25894397; http://dx.doi.org/10.1371/journal.pone.0124646
  • Lussignol M, Queval C, Bernet-Camard MF, Cotte-Laffitte J, Beau I, Codogno P, Esclatine A. The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J Virol 2013; 87:859-71; PMID:23115300; http://dx.doi.org/10.1128/JVI.01158-12
  • English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippé R, et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 2009; 10:480-7; PMID:19305394; http://dx.doi.org/10.1038/ni.1720
  • Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A 2005; 102:7922-7; PMID:15894616; http://dx.doi.org/10.1073/pnas.0501190102
  • Leib DA, Alexander DE, Cox D, Yin J, Ferguson TA. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol 2009; 83:12164-71; PMID:19759141; http://dx.doi.org/10.1128/JVI.01676-09
  • English L, Chemali M, Desjardins M. Nuclear membrane-derived autophagy, a novel process that participates in the presentation of endogenous viral antigens during HSV-1 infection. Autophagy 2009; 5:1026-9; PMID:19556870; http://dx.doi.org/10.4161/auto.5.7.9163
  • Radtke K, English L, Rondeau C, Leib D, Lippe R, Desjardins M. Inhibition of the host translation shutoff response by herpes simplex virus 1 triggers nuclear envelope-derived autophagy. J Virol 2013; 87:3990-7; PMID:23365427; http://dx.doi.org/10.1128/JVI.02974-12
  • Broberg EK, Peltoniemi J, Nygardas M, Vahlberg T, Roytta M, Hukkanen V. Spread and replication of and immune response to gamma134.5-negative herpes simplex virus type 1 vectors in BALB/c mice. J Virol 2004; 78:13139-52; PMID:15542666; http://dx.doi.org/10.1128/JVI.78.23.13139-13152.2004
  • Yakoub AM, Shukla D. Autophagy stimulation abrogates herpes simplex virus-1 infection. Sci Rep 2015; 5:9730; PMID:25856282; http://dx.doi.org/10.1038/srep09730
  • Chou J, Kern ER, Whitley RJ, Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250:1262-6; PMID:2173860; http://dx.doi.org/10.1126/science.2173860
  • Harrow S, Papanastassiou V, Harland J, Mabbs R, Petty R, Fraser M, Hadley D, Patterson J, Brown SM, Rampling R. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 2004; 11:1648-58; PMID:15334111; http://dx.doi.org/10.1038/sj.gt.3302289
  • Orvedahl A, Levine B. Autophagy and viral neurovirulence. Cell Microbiol 2008; 10:1747-56; PMID:18503639; http://dx.doi.org/10.1111/j.1462-5822.2008.01175.x
  • Verpooten D, Ma Y, Hou S, Yan Z, He B. Control of TANK-binding kinase 1-mediated signaling by the gamma(1)34.5 protein of herpes simplex virus 1. J Biol Chem 2009; 284:1097-105; PMID:19010780; http://dx.doi.org/10.1074/jbc.M805905200
  • Ma Y, Jin H, Valyi-Nagy T, Cao Y, Yan Z, He B. Inhibition of TANK binding kinase 1 by herpes simplex virus 1 facilitates productive infection. J Virol 2012; 86:2188-96; PMID:22171259; http://dx.doi.org/10.1128/JVI.05376-11
  • Weidberg H, Elazar Z. TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 2011; 4:pe39; PMID:21868362; http://dx.doi.org/10.1126/scisignal.2002355
  • Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 2012; 37:223-34; PMID:22921120; http://dx.doi.org/10.1016/j.immuni.2012.04.015
  • Cassady KA, Gross M, Roizman B. The herpes simplex virus US11 protein effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the α subunit of eukaryotic translation initiation factor 2. J Virol 1998; 72:8620-6; PMID:9765401
  • Poppers J, Mulvey M, Khoo D, Mohr I. Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol 2000; 74:11215-21; PMID:11070019; http://dx.doi.org/10.1128/JVI.74.23.11215-11221.2000
  • Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 2012; 12:334-45; PMID:22980330; http://dx.doi.org/10.1016/j.chom.2012.07.013
  • Wong YC, Holzbaur EL. Autophagosome dynamics in neurodegeneration at a glance. J Cell Sci 2015; 128:1259-67; PMID:25829512; http://dx.doi.org/10.1242/jcs.161216
  • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15:1101-11; PMID:14699058; http://dx.doi.org/10.1091/mbc.E03-09-0704
  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64:113-22; PMID:15751225; http://dx.doi.org/10.1093/jnen/64.2.113
  • Nixon RA. Endosome function and dysfunction in Alzheimer disease and other neurodegenerative diseases. Neurobiol Aging 2005; 26:373-82; PMID:15639316; http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.018
  • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer disease. J Neurosci 2008; 28:6926-37; PMID:18596167; http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008
  • Mitra S, Tsvetkov AS, Finkbeiner S. Protein turnover and inclusion body formation. Autophagy 2009; 5:1037-8; PMID:19838079; http://dx.doi.org/10.4161/auto.5.7.9291
  • Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009; 16:46-56; PMID:18636076; http://dx.doi.org/10.1038/cdd.2008.110
  • Fu MM, Nirschl JJ, Holzbaur EL. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 2014; 29:577-90; PMID:24914561; http://dx.doi.org/10.1016/j.devcel.2014.04.015
  • Yue Z, Friedman L, Komatsu M, Tanaka K. The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta 2009; 1793:1496-507; PMID:19339210; http://dx.doi.org/10.1016/j.bbamcr.2009.01.016
  • Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP, Chait BT, Zhong Y, Heintz N, Yue Z. Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 2006; 26:8057-68; PMID:16885219; http://dx.doi.org/10.1523/JNEUROSCI.2261-06.2006
  • Sumpter R, Jr., Levine B. Selective autophagy and viruses. Autophagy 2011; 7:260-5; PMID:21150267; http://dx.doi.org/10.4161/auto.7.3.14281
  • Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Biol 2009; 187:71-9; PMID:19786572; http://dx.doi.org/10.1083/jcb.200907109
  • Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K, Tomoda T, Diantonio A. Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J Neurosci 2009; 29:517-28; PMID:19144852; http://dx.doi.org/10.1523/JNEUROSCI.3848-08.2009
  • Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS. Highwire regulates synaptic growth in Drosophila. Neuron 2000; 26:313-29; PMID:10839352; http://dx.doi.org/10.1016/S0896-6273(00)81166-6
  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441:885-9; PMID:16625204; http://dx.doi.org/10.1038/nature04724
  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006; 441:880-4; PMID:16625205; http://dx.doi.org/10.1038/nature04723
  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Jr., Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 2007; 104:14489-94; PMID:17726112; http://dx.doi.org/10.1073/pnas.0701311104
  • Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 2015; 16:345-57; PMID:25991442; http://dx.doi.org/10.1038/nrn3961
  • Furuta Y, Takasu T, Sato KC, Fukuda S, Inuyama Y, Nagashima K. Latent herpes simplex virus type 1 in human geniculate ganglia. Acta Neuropathol 1992; 84:39-44; PMID:1323906; http://dx.doi.org/10.1007/BF00427213
  • Theil D, Arbusow V, Derfuss T, Strupp M, Pfeiffer M, Mascolo A, Brandt T. Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol 2001; 11:408-13; PMID:11556685; http://dx.doi.org/10.1111/j.1750-3639.2001.tb00408.x
  • Lewandowski G, Zimmerman MN, Denk LL, Porter DD, Prince GA. Herpes simplex type 1 infects and establishes latency in the brain and trigeminal ganglia during primary infection of the lip in cotton rats and mice. Arch Virol 2002; 147:167-79; PMID:11855629; http://dx.doi.org/10.1007/s705-002-8309-9
  • Kastrukoff L, Hamada T, Schumacher U, Long C, Doherty PC, Koprowski H. Central nervous system infection and immune response in mice inoculated into the lip with herpes simplex virus type 1. J Neuroimmunol 1982; 2:295-305; PMID:6282930; http://dx.doi.org/10.1016/0165-5728(82)90062-5
  • Dobson CB, Wozniak MA, Itzhaki RF. Do infectious agents play a role in dementia? Trends Microbiol 2003; 11:312-7; PMID:12875814; http://dx.doi.org/10.1016/S0966-842X(03)00146-X
  • Efstathiou S, Minson AC, Field HJ, Anderson JR, Wildy P. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans. J Virol 1986; 57:446-55; PMID:3003377
  • Rock DL, Fraser NW. Detection of HSV-1 genome in central nervous system of latently infected mice. Nature 1983; 302:523-5; PMID:6300686; http://dx.doi.org/10.1038/302523a0
  • Gordon L, McQuaid S, Cosby SL. Detection of herpes simplex virus (types 1 and 2) and human herpesvirus 6 DNA in human brain tissue by polymerase chain reaction. Clin Diagn Virol 1996; 6:33-40; PMID:15566888; http://dx.doi.org/10.1016/0928-0197(95)00203-0
  • Sequiera LW, Jennings LC, Carrasco LH, Lord MA, Curry A, Sutton RN. Detection of herpes-simplex viral genome in brain tissue. Lancet 1979; 2:609-12; PMID:90272; http://dx.doi.org/10.1016/S0140-6736(79)91667-2
  • Cabrera CV, Wohlenberg C, Openshaw H, Rey-Mendez M, Puga A, Notkins AL. Herpes simplex virus DNA sequences in the CNS of latently infected mice. Nature 1980; 288:288-90; PMID:6253827; http://dx.doi.org/10.1038/288288a0
  • Griffin DE. Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Immunol Res 2010; 47:123-33; PMID:20087684; http://dx.doi.org/10.1007/s12026-009-8143-4
  • Levine B. Apoptosis in viral infections of neurons: a protective or pathologic host response? Curr Top Microbiol Immunol 2002; 265:95-118; PMID:12014197
  • Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454:780-3; PMID:18596690
  • Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A 2008; 105:10931-6; PMID:18678906; http://dx.doi.org/10.1073/pnas.0801845105
  • Thompson RL, Sawtell NM. Herpes simplex virus type 1 latency-associated transcript gene promotes neuronal survival. J Virol 2001; 75:6660-75; PMID:11413333; http://dx.doi.org/10.1128/JVI.75.14.6660-6675.2001
  • Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC. Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLoS Pathog 2014; 10:e1004237; PMID:25058429; http://dx.doi.org/10.1371/journal.ppat.1004237
  • Chen SH, Lee LY, Garber DA, Schaffer PA, Knipe DM, Coen DM. Neither LAT nor open reading frame P mutations increase expression of spliced or intron-containing ICP0 transcripts in mouse ganglia latently infected with herpes simplex virus. J Virol 2002; 76:4764-72; PMID:11967293; http://dx.doi.org/10.1128/JVI.76.10.4764-4772.2002
  • Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP. Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 2002; 99:978-83; PMID:11773630; http://dx.doi.org/10.1073/pnas.022301899
  • Giordani NV, Neumann DM, Kwiatkowski DL, Bhattacharjee PS, McAnany PK, Hill JM, Bloom DC. During herpes simplex virus type 1 infection of rabbits, the ability to express the latency-associated transcript increases latent-phase transcription of lytic genes. J Virol 2008; 82:6056-60; PMID:18400860; http://dx.doi.org/10.1128/JVI.02661-07
  • Bolovan CA, Sawtell NM, Thompson RL. ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol 1994; 68:48-55; PMID:8254758
  • Yordy B, Iwasaki A. Cell type-dependent requirement of autophagy in HSV-1 antiviral defense. Autophagy 2013; 9:236-8; PMID:23095715; http://dx.doi.org/10.4161/auto.22506
  • Kimberlin DW, Lin CY, Jacobs RF, Powell DA, Frenkel LM, Gruber WC, Rathore M, Bradley JS, Diaz PS, Kumar M, et al. Natural history of neonatal herpes simplex virus infections in the acyclovir era. Pediatrics 2001; 108:223-9; PMID:11483781; http://dx.doi.org/10.1542/peds.108.2.223
  • Thompson RL, Wagner EK, Stevens JG. Physical location of a herpes simplex virus type-1 gene function(s) specifically associated with a 10 million-fold increase in HSV neurovirulence. Virology 1983; 131:180-92; PMID:6316650; http://dx.doi.org/10.1016/0042-6822(83)90544-5
  • Wilcox DR, Wadhwani NR, Longnecker R, Muller WJ. Differential reliance on autophagy for protection from HSV encephalitis between newborns and adults. PLoS Pathog 2015; 11:e1004580; PMID:25569138; http://dx.doi.org/10.1371/journal.ppat.1004580
  • Itzhaki RF. Herpes simplex virus type 1 and Alzheimer disease: increasing evidence for a major role of the virus. Front Aging Neurosci 2014; 6:202; PMID:25157230; http://dx.doi.org/10.3389/fnagi.2014.00202
  • Wozniak MA, Itzhaki RF. Antiviral agents in Alzheimer disease: hope for the future? Ther Adv Neurol Disord 2010; 3:141-52; PMID:21179606; http://dx.doi.org/10.1177/1756285610370069
  • Piacentini R, De Chiara G, Li Puma DD, Ripoli C, Marcocci ME, Garaci E, Palamara AT, Grassi C. HSV-1 and Alzheimer disease: more than a hypothesis. Front Pharmacol 2014; 5:97; PMID:24847267; http://dx.doi.org/10.3389/fphar.2014.00097
  • Hemling N, Roytta M, Rinne J, Pollanen P, Broberg E, Tapio V, Vahlberg T, Hukkanen V. Herpesviruses in brains in Alzheimer and Parkinson diseases. Ann Neurol 2003; 54:267-71; PMID:12891684; http://dx.doi.org/10.1002/ana.10662
  • Mori I, Kimura Y, Naiki H, Matsubara R, Takeuchi T, Yokochi T, Nishiyama Y. Reactivation of HSV-1 in the brain of patients with familial Alzheimer disease. J Med Virol 2004; 73:605-11; PMID:15221907; http://dx.doi.org/10.1002/jmv.20133
  • Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. Latent herpes simplex virus type 1 in normal and Alzheimer disease brains. J Med Virol 1991; 33:224-7; PMID:1649907; http://dx.doi.org/10.1002/jmv.1890330403
  • Jamieson GA, Maitland NJ, Wilcock GK, Yates CM, Itzhaki RF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol 1992; 167:365-8; PMID:1328575; http://dx.doi.org/10.1002/path.1711670403
  • Sokolov AA, Reincke M. Herpes simplex encephalitis affecting the entire limbic system. Mayo Clin Proc 2012; 87:e69; PMID:22959003; http://dx.doi.org/10.1016/j.mayocp.2012.06.023
  • Ando Y, Kitayama H, Kawaguchi Y, Koyanagi Y. Primary target cells of herpes simplex virus type 1 in the hippocampus. Microbes Infect 2008; 10:1514-23; PMID:18852062; http://dx.doi.org/10.1016/j.micinf.2008.09.005
  • Taylor SW, Lee DH, Jackson AC. Herpes simplex encephalitis presenting with exclusively frontal lobe involvement. J Neurovirol 2007; 13:477-81; PMID:17994434; http://dx.doi.org/10.1080/13550280701491131
  • Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA. Herpes simplex virus type 1 in brain and risk of Alzheimer disease. Lancet 1997; 349:241-4; PMID:9014911; http://dx.doi.org/10.1016/S0140-6736(96)10149-5
  • Plentz A, Jilg W, Kochanowski B, Ibach B, Knoll A. Detection of herpesvirus DNA in cerebrospinal fluid and correlation with clinical symptoms. Infection 2008; 36:158-62; PMID:18379728; http://dx.doi.org/10.1007/s15010-007-6354-y
  • Bearer EL. HSV, axonal transport and Alzheimer disease: in vitro and in vivo evidence for causal relationships. Future Virol 2012; 7:885-99; PMID:23335944; http://dx.doi.org/10.2217/fvl.12.81
  • Martin C, Aguila B, Araya P, Vio K, Valdivia S, Zambrano A, Concha MI, Otth C. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J Alzheimers Dis 2014; 39:849-59; PMID:24296813
  • Feart C, Helmer C, Fleury H, Bejot Y, Ritchie K, Amouyel P, Schraen-Maschke S, Buée L, Lambert JC, Letenneur L, et al. Association between IgM anti-herpes simplex virus and plasma amyloid-β levels. PLoS One 2011; 6:e29480; PMID:22216291; http://dx.doi.org/10.1371/journal.pone.0029480
  • Letenneur L, Peres K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer disease: a population-based cohort study. PLoS One 2008; 3:e3637; PMID:18982063; http://dx.doi.org/10.1371/journal.pone.0003637
  • Mancuso R, Baglio F, Cabinio M, Calabrese E, Hernis A, Nemni R, Clerici M. Titers of herpes simplex virus type 1 antibodies positively correlate with grey matter volumes in Alzheimer disease. J Alzheimers Dis 2014; 38:741-5; PMID:24072067
  • Itzhaki RF, Wozniak MA. Herpes simplex virus type 1 in Alzheimer disease: the enemy within. J Alzheimers Dis 2008; 13:393-405; PMID:18487848
  • Palop JJ, Mucke L. Amyloid-β-induced neuronal dysfunction in Alzheimer disease: from synapses toward neural networks. Nat Neurosci 2010; 13:812-8; PMID:20581818; http://dx.doi.org/10.1038/nn.2583
  • Sheng M, Sabatini BL, Sudhof TC. Synapses and Alzheimer disease. Cold Spring Harb Perspect Biol 2012; 4(5):a005777; PMID:22491782; http://dx.doi.org/10.1101/cshperspect.a005777.
  • Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 2008; 118:2190-9; PMID:18497889
  • Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, Stefanis L, Tolkovsky A. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 2005; 1:11-22; PMID:16874045; http://dx.doi.org/10.4161/auto.1.1.1513
  • Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 2005; 37:771-6; PMID:15980862; http://dx.doi.org/10.1038/ng1591
  • Yang Y, Chen S, Zhang J, Li C, Sun Y, Zhang L, Zheng X. Stimulation of autophagy prevents amyloid-β peptide-induced neuritic degeneration in PC12 cells. J Alzheimers Dis 2014; 40:929-39; PMID:24531159
  • Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer-like axonal dystrophy. J Neurosci 2011; 31:7817-30; PMID:21613495; http://dx.doi.org/10.1523/JNEUROSCI.6412-10.2011
  • Lee JA. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 2012; 21:1-8; PMID:22438673; http://dx.doi.org/10.5607/en.2012.21.1.1
  • Itzhaki RF, Cosby SL, Wozniak MA. Herpes simplex virus type 1 and Alzheimer disease: the autophagy connection. J Neurovirol 2008; 14:1-4; PMID:18300070; http://dx.doi.org/10.1080/13550280701802543
  • Goins WF, Huang S, Cohen JB, Glorioso JC. Engineering HSV-1 vectors for gene therapy. Methods Mol Biol 2014; 1144:63-79; PMID:24671677; http://dx.doi.org/10.1007/978-1-4939-0428-0_5
  • Liu R, Varghese S, Rabkin SD. Oncolytic herpes simplex virus vector therapy of breast cancer in C3(1)/SV40 T-antigen transgenic mice. Cancer Res 2005; 65:1532-40; PMID:15735042; http://dx.doi.org/10.1158/0008-5472.CAN-04-3353
  • Melendez ME, Fraefel C, Epstein AL. Herpes simplex virus type 1 (HSV-1)-derived amplicon vectors. Methods Mol Biol 2014; 1144:81-98; PMID:24671678; http://dx.doi.org/10.1007/978-1-4939-0428-0_6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.