3,694
Views
30
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis

, , &
Pages 1574-1585 | Received 19 Jul 2017, Accepted 05 Apr 2018, Published online: 21 Aug 2018

References

  • Avela K, Lipsanen-Nyman M, Idanheimo N, et al. Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet. 2000 Jul;25(3):298–301. PubMed PMID: 10888877.
  • Karlberg N, Jalanko H, Perheentupa J, et al. Mulibrey nanism: clinical features and diagnostic criteria. J Med Genet. 2004 Feb;41(2):92–98. PubMed PMID: 14757854; PubMed Central PMCID: PMC1735664.
  • Karlberg N, Jalanko H, Kallijarvi J, et al. Insulin resistance syndrome in subjects with mutated RING finger protein TRIM37. Diabetes. 2005 Dec;54(12):3577–3581. PubMed PMID: 16306379.
  • Karlberg N, Karlberg S, Karikoski R, et al. High frequency of tumours in mulibrey nanism. J Pathol. 2009 Jun;218(2):163–171. PubMed PMID: 19334051.
  • Hamalainen RH, Mowat D, Gabbett MT, et al. Wilms’ tumor and novel TRIM37 mutations in an Australian patient with mulibrey nanism. Clin Genet. 2006 Dec;70(6):473–479. PubMed PMID: 17100991.
  • Seemanova E, Bartsch O. Mulibrey nanism and Wilms tumor. Am J Med Genet. 1999 Jul 2;85(1):76–78. PubMed PMID: 10377015.
  • Simila S, Timonen M, Heikkinen E. A case of mulibrey nanism with associated Wilms’ tumor. Clin Genet. 1980 Jan;17(1):29–30. PubMed PMID: 6248277.
  • Sivunen J, Karlberg S, Lohi J, et al. Renal findings in patients with mulibrey nanism. Pediatr Nephrol. 2017 Apr 22;32:1531–1536. PubMed PMID: 28432469.
  • Bhatnagar S, Gazin C, Chamberlain L, et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature. 2014 Dec 4;516(7529):116–120. PubMed PMID: 25470042; PubMed Central PMCID: PMC4269325.
  • Meitinger F, Anzola JV, Kaulich M, et al. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration. J Cell Biol. 2016 Jul 18;214(2):155–166. PubMed PMID: 27432897; PubMed Central PMCID: PMC4949453.
  • Balestra FR, Strnad P, Fluckiger I, et al. Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. Dev Cell. 2013 Jun 24;25(6):555–571. PubMed PMID: 23769972.
  • Wang W, Xia ZJ, Farre JC, et al. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol. 2017 Sep 04;216(9):2843–2858. PubMed PMID: 28724525; PubMed Central PMCID: PMC5584156.
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012 Apr 13;149(2):274–293. PubMed PMID: 22500797; PubMed Central PMCID: PMC3331679.
  • Bond P. Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr. 2016;13:8. PubMed PMID: 26937223; PubMed Central PMCID: PMC4774173.
  • Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015 Jan;125(1):25–32. PubMed PMID: 25654547; PubMed Central PMCID: PMC4382265.
  • Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug 01;17(15):1829–1834. PubMed PMID: 12869586; PubMed Central PMCID: PMC196227.
  • Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002 Sep;4(9):648–657. PubMed PMID: 12172553.
  • Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002 Sep;4(9):658–665. PubMed PMID: 12172554.
  • Tee AR, Manning BD, Roux PP, et al. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Current Biol. 2003 Aug 05;13(15):1259–1268. PubMed PMID: 12906785.
  • Manning BD, Tee AR, Logsdon MN, et al. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002 Jul;10(1):151–162. PubMed PMID: 12150915.
  • Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014 Jul;24(7):400–406. PubMed PMID: 24698685; PubMed Central PMCID: PMC4074565.
  • Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013 Mar;14(3):133–139. PubMed PMID: 23361334; PubMed Central PMCID: PMC3988467.
  • Kim E, Goraksha-Hicks P, Li L, et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008 Aug;10(8):935–945. PubMed PMID: 18604198; PubMed Central PMCID: PMC2711503.
  • Sancak Y, Peterson TR, Shaul YD, et al. The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008 Jun 13;320(5882):1496–1501. PubMed PMID: 18497260; PubMed Central PMCID: PMC2475333.
  • Mizushima N. Autophagy: process and function. Genes Dev. 2007 Nov 15;21(22):2861–2873. PubMed PMID: 18006683.
  • Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015 Aug;16(8):461–472. PubMed PMID: 26177004.
  • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010 Oct 22;40(2):280–293. PubMed PMID: 20965422; PubMed Central PMCID: PMC3127250.
  • Settembre C, Zoncu R, Medina DL, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012 Mar 7;31(5):1095–1108. PubMed PMID: 22343943; PubMed Central PMCID: PMC3298007.
  • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012 Jun 12;5(228):ra42. PubMed PMID: 22692423; PubMed Central PMCID: PMC3437338.
  • Martina JA, Puertollano R. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol. 2013 Feb 18;200(4):475–491. PubMed PMID: 23401004; PubMed Central PMCID: PMC3575543.
  • Raben N, Puertollano R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Biol. 2016 Oct 06;32:255–278.
  • Nezich CL, Wang C, Fogel AI, et al. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J Cell Biol. 2015 Aug 03;210(3):435–450. PubMed PMID: 26240184; PubMed Central PMCID: PMC4523611.
  • Martina JA, Diab HI, Brady OA, et al. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 2016 Mar 01;35(5):479–495. PubMed PMID: 26813791; PubMed Central PMCID: PMC4772850.
  • Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009 Jul 24;325(5939):473–477. PubMed PMID: 19556463.
  • Palmieri M, Impey S, Kang H, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011 Oct 01;20(19):3852–3866. PubMed PMID: 21752829.
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011 Jun 17;332(6036):1429–1433. PubMed PMID: 21617040; PubMed Central PMCID: PMC3638014.
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. PubMed PMID: 26799652; PubMed Central PMCID: PMC4835977.
  • Jewell JL, Kim YC, Russell RC, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 2015 Jan 09;347(6218):194–198. PubMed PMID: 25567907; PubMed Central PMCID: PMC4384888.
  • Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie. 2014 Mar;98:56–62. PubMed PMID: 23933092.
  • Wang W, Subramani S. Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis. Cell Cycle. 2017 Sep 21:1–9. PubMed PMID: 28933989. DOI:10.1080/15384101.2017.1376149.
  • Zhang X, Cheng X, Yu L, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016 Jun 30;7:12109. PubMed PMID: 27357649; PubMed Central PMCID: PMC4931332.
  • Li RJ, Xu J, Fu C, et al. Regulation of mTORC1 by lysosomal calcium and calmodulin. eLife. 2016 Oct 27;5. PubMed PMID: 27787197; PubMed Central PMCID: PMC5106211.
  • Kallijarvi J, Lahtinen U, Hamalainen R, et al. TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase. Exp Cell Res. 2005 Aug 1;308(1):146–155. PubMed PMID: 15885686.
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011 Feb;13(2):132–141. PubMed PMID: 21258367; PubMed Central PMCID: PMC3987946.
  • Pastore N, Brady OA, Diab HI, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016 Aug 02;12(8):1240–1258. PubMed PMID: 27171064; PubMed Central PMCID: PMC4968228.
  • Huan C, Kelly ML, Steele R, et al. Transcription factors TFE3 and TFEB are critical for CD40 ligand expression and thymus-dependent humoral immunity. Nat Immunol. 2006 Oct;7(10):1082–1091. PubMed PMID: 16936731; PubMed Central PMCID: PMC2386253.
  • Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017 Mar 09;168(6):960–976. PubMed PMID: 28283069; PubMed Central PMCID: PMC5394987.
  • Rosner M, Hanneder M, Siegel N, et al. The mTOR pathway and its role in human genetic diseases. Mutat Res. 2008 Sep-Oct;659(3):284–292. PubMed PMID: 18598780.
  • Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005 Nov;12 Suppl 2:1509–1518. PubMed PMID: 16247498.
  • Das G, Shravage BV, Baehrecke EH. Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol. 2012 Jun 01;4(6):a008813–a008813. PubMed PMID: 22661635; PubMed Central PMCID: PMC3367545.
  • Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol. 2005 Jun;6(6):505–510. PubMed PMID: 15928714.
  • Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419. PubMed PMID: 25613900.
  • Mikhaylova O, Stratton Y, Hall D, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012 Apr 17;21(4):532–546. PubMed PMID: 22516261; PubMed Central PMCID: PMC3331999.
  • Liu XD, Zhu H, DePavia A, et al. Dysregulation of HIF2alpha and autophagy in renal cell carcinoma. Mol Cell Oncol. 2015 Apr–Jun;2(2):e965643. PubMed PMID: 27308417; PubMed Central PMCID: PMC4904964.
  • Kang JH, Lee JS, Hong D, et al. Renal cell carcinoma escapes death by p53 depletion through transglutaminase 2-chaperoned autophagy. Cell Death Dis. 2016 Mar 31;7:e2163. PubMed PMID: 27031960; PubMed Central PMCID: PMC4823929.
  • Pasquier B. Autophagy inhibitors. Cell Mol Life Sci. 2016 Mar;73(5):985–1001. PubMed PMID: 26658914.
  • Carew JS, Espitia CM, Zhao W, et al. Disruption of autophagic degradation with ROC-325 antagonizes renal cell carcinoma pathogenesis. Clinical Cancer Res. 2017 Jun 1;23(11):2869–2879. PubMed PMID: 27881580.
  • Yin P, Jia J, Li J, et al. ABT-737, a Bcl-2 elective inhibitor, and chloroquine synergistically kill renal cancer cells. Oncol Res. 2016;24(1):65–72. PubMed PMID: 27178823.
  • Kimura T, Takabatake Y, Takahashi A, et al. Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 2013 Jan 01;73(1):3–7. PubMed PMID: 23288916.
  • Nazarko TY, Ozeki K, Till A, et al. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol. 2014 Feb 17;204(4):541–557. PubMed PMID: 24535825; PubMed Central PMCID: PMC3926955.
  • Xia Q, Wang H, Hao Z, et al. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J. 2016 Jan 18;35(2):121–142. PubMed PMID: 26702100; PubMed Central PMCID: PMC4718457.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.