3,727
Views
15
CrossRef citations to date
0
Altmetric
Research Paper - Basic Science

Compromised phagosome maturation underlies RPE pathology in cell culture and whole animal models of Smith-Lemli-Opitz Syndrome

, , , , , , , & show all
Pages 1796-1817 | Received 10 Aug 2017, Accepted 11 Jun 2018, Published online: 31 Jul 2018

References

  • Smith DW, Lemli L, Opitz JM. A newly recognized syndrome of multiple congenital anomalies. J Pediatr. 1964 Feb;64:210–217. PubMed PMID: 14119520
  • Bloch K. Sterol structure and function. Steroids. 1989 Mar-May;53(3–5):261–270. PubMed PMID: 2799845
  • Yu H, Lee MH, Starck L, et al. Spectrum of Delta(7)-dehydrocholesterol reductase mutations in patients with the Smith-Lemli-Opitz (RSH) syndrome. Hum Mol Genet. 2000 May 22;9(9):1385–1391. PubMed PMID: 10814720
  • Honda A, Tint GS, Salen G, et al. Defective conversion of 7-dehydrocholesterol to cholesterol in cultured skin fibroblasts from Smith-Lemli-Opitz syndrome homozygotes. J Lipid Res. 1995 Jul;36(7):1595–1601. PubMed PMID: 7595082
  • Shefer S, Salen G, Batta AK, et al. Markedly inhibited 7-dehydrocholesterol-delta 7-reductase activity in liver microsomes from Smith-Lemli-Opitz homozygotes. J Clin Invest. 1995 Oct;96(4):1779–1785. PubMed PMID: 7560069; PubMed Central PMCID: PMC185814.
  • Xu L, Korade Z, Rosado DA Jr. et al. An oxysterol biomarker for 7-dehydrocholesterol oxidation in cell/mouse models for Smith-Lemli-Opitz syndrome. J Lipid Res. 2011 Jun;52(6):1222–1233.. PubMed PMID: 21402677; PubMed Central PMCID: PMC3090243
  • Xu L, Korade Z, Porter NA. Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: product and mechanistic studies. J Am Chem Soc. 2010 Feb 24;132(7):2222–2232.. PubMed PMID: 20121089; PubMed Central PMCID: PMC2839323.
  • Xu L, Sheflin LG, Porter NA, et al. 7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz syndrome. Biochim Biophys Acta. 2012 Jun;1821(6):877–883. PubMed PMID: 22425966; PubMed Central PMCID: PMC3340457.
  • Lin AE, Ardinger HH, Ardinger RH Jr., et al. Cardiovascular malformations in Smith-Lemli-Opitz syndrome. Am J Med Genet. 1997 Jan 31;68(3):270–278. PubMed PMID: 9024558
  • Witsch-Baumgartner M, Fitzky BU, Ogorelkova M, et al. Mutational spectrum in the Delta7-sterol reductase gene and genotype-phenotype correlation in 84 patients with Smith-Lemli-Opitz syndrome. Am J Hum Genet. 2000 Feb;66(2):402–412. PubMed PMID: 10677299; PubMed Central PMCID: PMC1288092.
  • Kretzer FL, Hittner HM, Mehta RS. Ocular manifestations of the Smith-Lemli-Opitz syndrome. Arch Ophthalmol. 1981 Nov;99(11):2000–2006. PubMed PMID: 7295150
  • Garry D, Hansen RM, Moskowitz A, et al. Cone ERG responses in patients with Smith-Lemli-Opitz Syndrome (SLOS). Doc Ophthalmol. 2010 Oct;121(2):85–91. PubMed PMID: 20440536; PubMed Central PMCID: PMC2935499.
  • Fliesler SJ, Peachey NS, Richards MJ, et al. Retinal degeneration in a rodent model of Smith-Lemli-Opitz syndrome: electrophysiologic, biochemical, and morphologic features. Arch Ophthalmol. 2004 Aug;122(8):1190–1200. PubMed PMID: 15302661; PubMed Central PMCID: PMC2865831.
  • Tu C, Li J, Jiang X, et al. Ion-current-based proteomic profiling of the retina in a rat model of Smith-Lemli-Opitz syndrome. Mol Cell Proteomics. 2013 Dec;12(12):3583–3598. PubMed PMID: 23979708; PubMed Central PMCID: PMC3861709.
  • Boesze-Battaglia K, Damek-Poprawa M, Mitchell DC, et al. Alteration of retinal rod outer segment membrane fluidity in a rat model of Smith-Lemli-Opitz syndrome. J Lipid Res. 2008 Jul;49(7):1488–1499. PubMed PMID: 18344409; PubMed Central PMCID: PMC2431111.
  • Ford DA, Monda JK, Brush RS, et al. Lipidomic analysis of the retina in a rat model of Smith-Lemli-Opitz syndrome: alterations in docosahexaenoic acid content of phospholipid molecular species. J Neurochem. 2008 May;105(3):1032–1047. PubMed PMID: 18182048; PubMed Central PMCID: PMC2721972.
  • Fliesler SJ, Richards MJ, Miller C, et al. Marked alteration of sterol metabolism and composition without compromising retinal development or function. Invest Ophthalmol Vis Sci. 1999 Jul;40(8):1792–1801. PubMed PMID: 10393050
  • Fliesler SJ, Peachey NS, Herron J, et al. Prevention of retinal degeneration in a rat model of Smith-Lemli-Opitz Syndrome. Sci Rep. 2018 Jan 19;8(1):1286. 10.1038/s41598-018-19592-8. PubMed PMID: 29352199; PubMed Central PMCID: PMC5775248
  • Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye: implications for ocular cell health. Exp Eye Res. 2014 Jul;124:56–66. PubMed PMID: 24810222; PubMed Central PMCID: PMC4156154.
  • Ferguson TA, Green DR. Autophagy and phagocytosis converge for better vision. Autophagy. 2014 Jan;10(1):165–167.. PubMed PMID: 24220227; PubMed Central PMCID: PMC4028322
  • Young RW, Bok D. Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol. 1969 Aug;42(2):392–403. PubMed PMID: 5792328; PubMed Central PMCID: PMC2107669
  • Kellner U, Kellner S, Weinitz S. Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc Ophthalmol. 2008 Mar;116(2):119–127.. PubMed PMID: 18080820
  • Yoon YH, Cho KS, Hwang JJ, et al. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci. 2010 Nov;51(11):6030–6037. PubMed PMID: 20574031.
  • Matsumura M, Ohkuma M, Tsukahara I. Experimental chloroquine retinopathy. Ophthalmic Res. 1986;18(3):172–179. PubMed PMID: 3018650
  • Mahon GJ, Anderson HR, Gardiner TA, et al. Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy. Curr Eye Res. 2004 Apr;28(4):277–284. PubMed PMID: 15259297
  • Kim JY, Zhao H, Martinez J, et al. Noncanonical autophagy promotes the visual cycle. Cell. 2013 Jul 18;154(2):365–376. PubMed PMID: 23870125; PubMed Central PMCID: PMC3744125.
  • Gal A, Li Y, Thompson DA, et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat Genet. 2000 Nov;26(3):270–271. PubMed PMID: 11062461.
  • Francis KR, Ton AN, Xin Y, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med. 2016 Apr;22(4):388–396. PubMed PMID: 26998835; PubMed Central PMCID: PMC4823163.
  • Maminishkis A, Chen S, Jalickee S, et al. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci. 2006 Aug;47(8):3612–3624. PubMed PMID: 16877436; PubMed Central PMCID: PMC1904392.
  • Saari JC, Nawrot M, Kennedy BN, et al. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron. 2001 Mar;29(3):739–748. PubMed PMID: 11301032
  • Toops KA, Tan LX, Jiang Z, et al. Cholesterol-mediated activation of acid sphingomyelinase disrupts autophagy in the retinal pigment epithelium. Mol Biol Cell. 2015 Jan 01;26(1):1–14. PubMed PMID: 25378587; PubMed Central PMCID: PMC4279221.
  • Xie R, Nguyen S, McKeehan WL, et al. Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol. 2010 Nov 22;11:89.. PubMed PMID: 21092184; PubMed Central PMCID: PMC2995476.
  • Marmorstein AD, Marmorstein LY, Rayborn M, et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12758–12763. PubMed PMID: 11050159; PubMed Central PMCID: PMC18837.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402–408.. PubMed PMID: 11846609
  • Pfeffer BA, Becerra SP, Borst DE, et al. Expression of transthyretin and retinol binding protein mRNAs and secretion of transthyretin by cultured monkey retinal pigment epithelium. Mol Vis. 2004 Jan;14(10):23–30. PubMed PMID: 14737066
  • Pfeffer BA. Improved methodology for cell culture of human and monkey retinal pigment epithelium. Prog Retin Res. 1991;10:251–291.. PubMed PMID: WOS:A1991HK14200009; English
  • Yu H, Tint GS, Salen G, et al. Detection of a common mutation in the RSH or Smith-Lemli-Opitz syndrome by a PCR-RFLP assay: IVS8-G–>C is found in over sixty percent of US propositi. Am J Med Genet. 2000 Feb 14;90(4):347–350. PubMed PMID: 10710236
  • Krakowiak PA, Nwokoro NA, Wassif CA, et al. Mutation analysis and description of sixteen RSH/Smith-Lemli-Opitz syndrome patients: polymerase chain reaction-based assays to simplify genotyping. Am J Med Genet. 2000 Sep 18;94(3):214–227. PubMed PMID: 10995508
  • Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005 Nov 21;171(4):603–614. PubMed PMID: 16286508; PubMed Central PMCID: PMC2171557.
  • Wang L, Cano M, Handa JT. p62 provides dual cytoprotection against oxidative stress in the retinal pigment epithelium. Biochim Biophys Acta. 2014 Jul;1843(7):1248–1258.. PubMed PMID: 24667411; PubMed Central PMCID: PMC4019388
  • Miettinen TP, Bjorklund M. Mevalonate pathway regulates cell size homeostasis and proteostasis through autophagy. Cell Rep. 2015 Dec 22;13(11):2610–2620.. PubMed PMID: 26686643; PubMed Central PMCID: PMC4709259.
  • Tricarico PM, Crovella S, Celsi F. Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int J Mol Sci. 2015 Jul 15;16(7):16067–16084.. PubMed PMID: 26184189; PubMed Central PMCID: PMC4519939.
  • Coffey EE, Beckel JM, Laties AM, et al. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience. 2014 Mar 28;263:111–124.. PubMed PMID: 24418614; PubMed Central PMCID: PMC4028113.
  • Guha S, Coffey EE, Lu W, et al. Approaches for detecting lysosomal alkalinization and impaired degradation in fresh and cultured RPE cells: evidence for a role in retinal degenerations. Exp Eye Res. 2014 Sep;126:68–76. PubMed PMID: 25152362; PubMed Central PMCID: PMC4143779.
  • Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol. 2010 Jun;221(2):117–124.. PubMed PMID: 20225337; PubMed Central PMCID: PMC2989884
  • Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol. 2008;445:77–88.. PubMed PMID: 18425443
  • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007 Aug 17;282(33):24131–24145. PubMed PMID: 17580304.
  • Gottlieb RA, Andres AM, Sin J, et al. Untangling autophagy measurements: all fluxed up. Circ Res. 2015 Jan 30;116(3):504–514.. PubMed PMID: 25634973; PubMed Central PMCID: PMC4313387.
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222.. PubMed PMID: 26799652; PubMed Central PMCID: PMC4835977
  • Sahani MH, Itakura E, Mizushima N. Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy. 2014 Mar;10(3):431–441.. PubMed PMID: 24394643; PubMed Central PMCID: PMC4077882
  • Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007 Dec 28;282(52):37298–37302. PubMed PMID: 17986448.
  • Kim M, Sandford E, Gatica D, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife. 2016 Jan;26:5. PubMed PMID: 26812546; PubMed Central PMCID: PMC4786408.
  • Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010 Feb 5;140(3):313–326.. PubMed PMID: 20144757; PubMed Central PMCID: PMC2852113.
  • Deguchi J, Yamamoto A, Yoshimori T, et al. Acidification of phagosomes and degradation of rod outer segments in rat retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):568–579. PubMed PMID: 8113008
  • Bosch E, Horwitz J, Bok D. Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction. J Histochem Cytochem. 1993 Feb;41(2):253–263.. PubMed PMID: 8419462
  • Wavre-Shapton ST, Meschede IP, Seabra MC, et al. Phagosome maturation during endosome interaction revealed by partial rhodopsin processing in retinal pigment epithelium. J Cell Sci. 2014 Sep 01;127(Pt 17):3852–3861. PubMed PMID: 25074813; PubMed Central PMCID: PMC4150067.
  • Esteve-Rudd J, Lopes VS, Jiang M, et al. In vivo and in vitro monitoring of phagosome maturation in retinal pigment epithelium cells. Adv Exp Med Biol. 2014;801:85–90.. PubMed PMID: 24664684
  • Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889–1892. PubMed PMID: 6952238; PubMed Central PMCID: PMC346086
  • Fliesler SJ. Antioxidants: the missing key to improved therapeutic intervention in Smith-Lemli-Opitz Syndrome? Hereditary Genet. 2013 Dec 1;2(2):119.. PubMed PMID: 24533230; PubMed Central PMCID: PMC3925008.
  • Fliesler SJ. Retinal degeneration and cholesterol deficiency [Book Chaper]. Handbook Nutrition, Diet Eye. 2014;1:287–297.
  • Liu J, Itagaki Y, Ben-Shabat S, et al. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem. 2000 Sep 22;275(38):29354–29360. PubMed PMID: 10887199.
  • Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005 May;80(5):595–606.. PubMed PMID: 15862166
  • Crouch RK, Koutalos Y, Kono M, et al. A2E and Lipofuscin. Prog Mol Biol Transl Sci. 2015;134:449–463.. PubMed PMID: 26310170
  • LaVail MM. Outer segment disc shedding and phagocytosis in the outer retina. Trans Ophthalmol Soc U K. 1983;103(Pt 4):397–404. PubMed PMID: 6380008
  • Correa-Cerro LS, Wassif CA, Kratz L, et al. Development and characterization of a hypomorphic Smith-Lemli-Opitz syndrome mouse model and efficacy of simvastatin therapy. Hum Mol Genet. 2006 Mar 15;15;(6):839–851. PubMed PMID: 16446309. DOI:10.1093/hmg/ddl003.
  • Marcos J, Shackleton CH, Buddhikot MM, et al. Cholesterol biosynthesis from birth to adulthood in a mouse model for 7-dehydrosterol reductase deficiency (Smith-Lemli-Opitz syndrome). Steroids. 2007 Oct;72(11–12):802–808. PubMed PMID: 17714750; PubMed Central PMCID: PMC2911235.
  • Caldwell RB, McLaughlin BJ. Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas. J Comp Neurol. 1985 Jun 22;236(4):523–537.. PubMed PMID: 4056101.
  • Punnonen EL, Pihakaski K, Mattila K, et al. Intramembrane particles and filipin labelling on the membranes of autophagic vacuoles and lysosomes in mouse liver. Cell Tissue Res. 1989 Nov;258(2):269–276. PubMed PMID: 2582478
  • Brandstaetter H, Kishi-Itakura C, Tumbarello DA, et al. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion. Autophagy. 2014;10(12):2310–2323.. PubMed PMID: 25551774; PubMed Central PMCID: PMC4502697
  • Amer AO, Byrne BG, Swanson MS. Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy. 2005 Apr;1(1):53–58. PubMed PMID: 16874021; PubMed Central PMCID: PMC1584280
  • Koga H, Kaushik S, Cuervo AM. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010 Aug;24(8):3052–3065.. PubMed PMID: 20375270; PubMed Central PMCID: PMC2909278
  • Rai A, Pathak D, Thakur S, et al. Dynein clusters into lipid microdomains on phagosomes to drive rapid transport toward lysosomes. Cell. 2016 Feb 11;164(4):722–734. PubMed PMID: 26853472; PubMed Central PMCID: PMC4752818.
  • Wijdeven RH, Janssen H, Nahidiazar L, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016 Jun 10;7:11808.. PubMed PMID: 27283760; PubMed Central PMCID: PMC4906411.
  • Chang S, Ren G, Steiner RD, et al. Elevated autophagy and mitochondrial dysfunction in the Smith-Lemli-Opitz Syndrome. Mol Genet Metab Rep. 2014;1:431–442.. PubMed PMID: 25405082; PubMed Central PMCID: PMC4231544
  • Fong JT, Kells RM, Gumpert AM, et al. Internalized gap junctions are degraded by autophagy. Autophagy. 2012 May 01;8(5):794–811. PubMed PMID: 22635056; PubMed Central PMCID: PMC3378421.
  • Carette D, Gilleron J, Denizot JP, et al. New cellular mechanisms of gap junction degradation and recycling. Biol Cell. 2015 Jul;107(7):218–231. PubMed PMID: 25818265.
  • Ma JH, Wang JJ, Li J, et al. The role of IRE-XBP1 pathway in regulation of retinal pigment epithelium tight junctions. Invest Ophthalmol Vis Sci. 2016 Oct 1;57(13):5244–5252. PubMed PMID: 27701635; PubMed Central PMCID: PMC5054729.
  • Gordiyenko N, Campos M, Lee JW, et al. RPE cells internalize low-density lipoprotein (LDL) and oxidized LDL (oxLDL) in large quantities in vitro and in vivo. Invest Ophthalmol Vis Sci. 2004 Aug;45(8):2822–2829. PubMed PMID: 15277509.
  • Tserentsoodol N, Sztein J, Campos M, et al. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol Vis. 2006 Oct;27(12):1306–1318. PubMed PMID: 17110914
  • Claudepierre T, Paques M, Simonutti M, et al. Lack of Niemann-Pick type C1 induces age-related degeneration in the mouse retina. Mol Cell Neurosci. 2010 Jan;43(1):164–176. PubMed PMID: 19883762.
  • Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev. 2016 Sep;273(1):156–179.. PubMed PMID: 27558334
  • Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014 Jan;24(1):24–41. PubMed PMID: 24366339; PubMed Central PMCID: PMC3879710.
  • Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases. Nat Neurosci. 2010 Jul;13(7):805–811.. PubMed PMID: 20581817; PubMed Central PMCID: PMC4038747
  • Sinha D, Valapala M, Shang P, et al. Lysosomes: regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res. 2016 Mar;144:46–53. PubMed PMID: 26321509; PubMed Central PMCID: PMC4698066.
  • Ferrington DA, Sinha D, Kaarniranta K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog Retin Eye Res. 2016 Mar;51:69–89. PubMed PMID: 26344735; PubMed Central PMCID: PMC4769684.
  • Lavandero S, Chiong M, Rothermel BA, et al. Autophagy in cardiovascular biology. J Clin Invest. 2015 Jan;125(1):55–64. PubMed PMID: 25654551; PubMed Central PMCID: PMC4382263.
  • Vieira OV, Botelho RJ, Grinstein S. Phagosome maturation: aging gracefully. Biochem J. 2002 Sep 15;366(Pt 3):689–704.. PubMed PMID: 12061891; PubMed Central PMCID: PMC1222826.
  • Terman A, Kurz T, Navratil M, et al. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal. 2010 Apr;12(4):503–535. PubMed PMID: 19650712; PubMed Central PMCID: PMC2861545.
  • Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014 Jan;24(1):92–104.. PubMed PMID: 24281265; PubMed Central PMCID: PMC3879702
  • Mitter SK, Song C, Qi X, et al. Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD. Autophagy. 2014;10(11):1989–2005.. PubMed PMID: 25484094; PubMed Central PMCID: PMC4502658
  • Sparrow JR, Yamamoto K. The bisretinoids of RPE lipofuscin: a complex mixture. Adv Exp Med Biol. 2012;723:761–767.. PubMed PMID: 22183404
  • Ng KP, Gugiu B, Renganathan K, et al. Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics. 2008 Jul;7(7):1397–1405. PubMed PMID: 18436525; PubMed Central PMCID: PMC2493379.
  • Lakkaraju A, Finnemann SC, Rodriguez-Boulan E. The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11026–11031.. PubMed PMID: 17578916; PubMed Central PMCID: PMC1904145.
  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013 Aug;19(8):983–997.. PubMed PMID: 23921753
  • Saadat KA, Murakami Y, Tan X, et al. Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E. FEBS Open Bio. 2014;4:1007–1014.. PubMed PMID: 25473597; PubMed Central PMCID: PMC4250541
  • Lei L, Tzekov R, Li H, et al. Inhibition or stimulation of autophagy affects early formation of lipofuscin-like autofluorescence in the retinal pigment epithelium cell. Int J Mol Sci. 2017 Mar 29;18(4). PubMed PMID: 28353645; PubMed Central PMCID: PMC5412314. DOI:10.3390/ijms18040728.
  • Simons K, Ehehalt R. Cholesterol, lipid rafts, and disease. J Clin Invest. 2002 Sep;110(5):597–603.. PubMed PMID: 12208858; PubMed Central PMCID: PMC151114
  • Mayor S, Rao M. Rafts: scale-dependent, active lipid organization at the cell surface. Traffic. 2004 Apr;5(4):231–240.. PubMed PMID: 15030564
  • Sarkar S, Carroll B, Buganim Y, et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 2013 Dec 12;5(5):1302–1315. PubMed PMID: 24290752; PubMed Central PMCID: PMC3957429.
  • Ishibashi S, Yamazaki T, Okamoto K. Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells. J Clin Neurosci. 2009 Jul;16(7):954–959.. PubMed PMID: 19342246
  • Huynh KK, Gershenzon E, Grinstein S. Cholesterol accumulation by macrophages impairs phagosome maturation. J Biol Chem. 2008 Dec 19;283(51):35745–35755.. PubMed PMID: 18955491.
  • Rocha N, Kuijl C, van der Kant R, et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol. 2009 Jun 29;185(7):1209–1225. PubMed PMID: 19564404; PubMed Central PMCID: PMC2712958.
  • Hoppe G, O’Neil J, Hoff HF, et al. Accumulation of oxidized lipid-protein complexes alters phagosome maturation in retinal pigment epithelium. Cell Mol Life Sci. 2004 Jul;61(13):1664–1674. PubMed PMID: 15224189.
  • Frost LS, Lopes VS, Bragin A, et al. The contribution of melanoregulin to microtubule-associated protein 1 light chain 3 (LC3) associated phagocytosis in retinal pigment epithelium. Mol Neurobiol. 2015 Dec;52(3):1135–1151. 10.1007/s12035-014-8920-5. PubMed PMID: 25301234
  • Xu L, Korade Z, Rosado DA Jr. et al. Metabolism of oxysterols derived from nonenzymatic oxidation of 7-dehydrocholesterol in cells. J Lipid Res. 2013 Apr;54(4):1135–1143.. PubMed PMID: 23381570; PubMed Central PMCID: PMC3605989
  • Xu L, Liu W, Sheflin LG, et al. Novel oxysterols observed in tissues and fluids of AY9944-treated rats: a model for Smith-Lemli-Opitz syndrome. J Lipid Res. 2011 Oct;52(10):1810–1820. PubMed PMID: 21817059; PubMed Central PMCID: PMC3173002.
  • Wassif CA, Vied D, Tsokos M, et al. Cholesterol storage defect in RSH/Smith-Lemli-Opitz syndrome fibroblasts. Mol Genet Metab. 2002 Apr;75(4):325–334. PubMed PMID: 12051964.
  • Elrick MJ, Yu T, Chung C, et al. Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. Hum Mol Genet. 2012 Nov 15;21(22):4876–4887. PubMed PMID: 22872701; PubMed Central PMCID: PMC3607480.
  • Cox BE, Griffin EE, Ullery JC, et al. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J Lipid Res. 2007 May;48(5):1012–1021. PubMed PMID: 17308299.
  • Ying L, Matabosch X, Serra M, et al. Biochemical and physiological improvement in a mouse model of Smith-Lemli-Opitz Syndrome (SLOS) following gene transfer with AAV vectors. Mol Genet Metab Rep. 2014;1:103–113.. PubMed PMID: 25024934; PubMed Central PMCID: PMC4093838
  • Muniz-Feliciano L, Doggett TA, Zhou Z, et al. RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy. 2017;13(12):2072–2085.. PubMed PMID: 28933590; PubMed Central PMCID: PMC5788552
  • Ferrer M, Corneo B, Davis J, et al. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014 Aug;3(8):911–922. PubMed PMID: 24873859; PubMed Central PMCID: PMC4116245.
  • Miyagishima KJ, Wan Q, Corneo B, et al. In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med. 2016 Nov;5(11):1562–1574. PubMed PMID: 27400791; PubMed Central PMCID: PMC5070511.
  • Saini JS, Corneo B, Miller JD, et al. Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration. Cell Stem Cell. 2017 May 4;20(5):635–647 e7. PubMed PMID: 28132833; PubMed Central PMCID: PMC5419856.
  • Pfeffer BA, Xu L, Porter NA, et al. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: dependence on sterol structure, cell type, and density. Exp Eye Res. 2016 Apr;145:297–316. PubMed PMID: 26854824; PubMed Central PMCID: PMC5024725.
  • Cham BE, Knowles BR. A solvent system for delipidation of plasma or serum without protein precipitation. J Lipid Res. 1976 Mar;17(2):176–181. PubMed PMID: 818332
  • Keller RK, Mitchell DA, Goulah CC, et al. Hepatic isoprenoid metabolism in a rat model of Smith-Lemli-Opitz Syndrome. Lipids. 2013 Mar;48(3):219–229. PubMed PMID: 23361583; PubMed Central PMCID: PMC3595616.
  • Wassif CA, Krakowiak PA, Wright BS, et al. Residual cholesterol synthesis and simvastatin induction of cholesterol synthesis in Smith-Lemli-Opitz syndrome fibroblasts. Mol Genet Metab. 2005 Jun;85(2):96–107. PubMed PMID: 15896653.
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011 Oct 11;7:539.. PubMed PMID: 21988835; PubMed Central PMCID: PMC3261699.
  • Marmorstein AD, Marmorstein LY, Sakaguchi H, et al. Spectral profiling of autofluorescence associated with lipofuscin, Bruch’s Membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci. 2002 Jul;43(7):2435–2441. PubMed PMID: 12091448
  • Yamamoto K, Yoon KD, Ueda K, et al. A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine. Invest Ophthalmol Vis Sci. 2011 Nov 25;52(12):9084–9090. PubMed PMID: 22039245; PubMed Central PMCID: PMC3231846.
  • Baltazar GC, Guha S, Lu W, et al. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS One. 2012;7(12):e49635.. PubMed PMID: 23272048; PubMed Central PMCID: PMC3525582
  • Brandl C, Zimmermann SJ, Milenkovic VM, et al. In-depth characterisation of retinal pigment epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med. 2014 Sep;16(3):551–564. PubMed PMID: 24801942; PubMed Central PMCID: PMC4119585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.