2,447
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

A NOVEL NOX/PHOX-CD38-NAADP-TFEB AXIS IMPORTANT FOR MACROPHAGE ACTIVATION DURING BACTERIAL PHAGOCYTOSIS

, , , ORCID Icon & ORCID Icon
Pages 124-141 | Received 12 Jun 2019, Accepted 18 Mar 2021, Published online: 13 Apr 2021

References

  • Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17(1):593–623.
  • Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11(11):750–761.
  • Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nature Reviews Immunology. 2009;9(10):692–703.
  • Visvikis O, Ihuegbu N, Labed SA, et al. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity 2014;40:896–909.
  • Najibi M, Labed SA, Visvikis O, et al. An evolutionarily conserved PLC-PKD-TFEB Pathway for Host Defense. Cell Rep. 2016;15:1728–1742.
  • Pastore N, Brady OA, Diab HI, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 2016;12:1240–1258.
  • Gray MA, Choy CH, Dayam RM, et al. Phagocytosis Enhances Lysosomal and Bactericidal Properties by Activating the Transcription Factor TFEB. Curr Biology Cb. 2016;26:1955–1964.
  • Puertollano R, Ferguson SM, Brugarolas J, et al. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. Embo J. 2018;37:e98804.
  • Raben N, Puertollano R. TFEB and TFE3: linking lysosomes to cellular adaptation to stress. Annu Rev Cell Dev Bi. 2016;32:255–278.
  • Martina JA, Puertollano R. Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress. J Biological Chem. 2018;293(32):12525–12534. .
  • El-Houjeiri L, Possik E, Vijayaraghavan T, et al. The Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate Immune Response and Pathogen Resistance. Cell Rep. 2019;26(3613–3628):e6.
  • Eswarappa SM, Negi VD, Chakraborty S, et al. Division of the Salmonella-Containing Vacuole and Depletion of Acidic Lysosomes in Salmonella-Infected Host Cells Are Novel Strategies of Salmonella enterica To Avoid Lysosomes. Infect Immun. 2010;78(1):68–79.
  • McGourty K, Thurston TL, Matthews SA, et al. Salmonella Inhibits Retrograde Trafficking of Mannose-6-Phosphate Receptors and Lysosome Function. Science 2012;338(6109):963–967.
  • Fisher DE, Carr CS, Parent LA, et al. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes and Development. 1991;5(12a):2342 2352. .
  • Salma N, Song JS, Kawakami A, et al. Tfe3 and Tfeb transcriptionally regulate peroxisome proliferator-activated receptor γ2 expression in adipocytes and mediate adiponectin and glucose levels in mice. Mol Cell Biol. 2017;37(15):e00608–16.
  • Pastore N, Vainshtein A, Herz NJ, et al. Nutrient-sensitive transcription factors TFEB and TFE 3 couple autophagy and metabolism to the peripheral clock. Embo J. 2019;38(12):e101347.
  • Fabregat A, Jupe S, Matthews L, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2017;46(D1):D649–D655.
  • Raudvere U, Kolberg L, Kuzmin I, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–W198.
  • Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9.
  • Yamamoto M, Sato S, Hemmi H, et al. Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science 2003;301(5633):640–643
  • Knethen AV, Brüne B. PKCα depletion in RAW264.7 macrophages following microbial/IFNγ Stimulation Is PC-PLC-Mediated. Antioxid Redox Sign. 2005;7(9–10):1217–1222.
  • Ramoni C, Spadaro F, Barletta B, et al. Phosphatidylcholine-specific phospholipase C in mitogen-stimulated fibroblasts. Exp Cell Res. 2004;299(2):370 382.
  • Lavalle CR, Bravo-Altamirano K, Giridhar KV, et al. Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility. BMC Chemical Biology. 2010;10(1):5.
  • Medina DL, Paola SD, Peluso I, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology. 2015;17(3):288–299.
  • Liu J, Farmer JD, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991;66(4):807–815.
  • Liu C, Hermann TE. Characterization of ionomycin as a calcium ionophore. Journal of Biological Chemistry. 1978;253(17):5892–5894.
  • Paola SD, Scotto-Rosato A, Medina DL. TRPML1: the Ca(2+)retaker of the lysosome. Cell Calcium. 2018;69:112–121.
  • Shen D, Wang X, Li X, et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nature Communications. 2012;3(1):731.
  • Guse AH, Lee HC. NAADP: a universal Ca2+ trigger. Science Signaling. 2018;293(44):re10.
  • Li P, Gu M, Xu H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends in Biochemical Sciences. 2019;44(2):110–124.
  • Naylor E, Arredouani A, Vasudevan SR, et al. Identification of a chemical probe for NAADP by virtual screening. Nature Chemical Biology. 2003;301(4):640–646.
  • Kellenberger E, Kuhn I, Schuber F, et al. Flavonoids as inhibitors of human CD38. Bioorganic & Medicinal Chemistry Letters. 2011;21(13):3939–3942.
  • Escande C, Nin V, Price NL, et al. Flavonoid apigenin is an inhibitor of the NAD+ase CD38: implications for Cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes. 2013;62(4):1084–1093.
  • Shukla S, Apigenin GS, Promising A. Molecule for Cancer Prevention. Pharmaceut Res. 2010;27:962–978.
  • Winter AN, Ross EK, Khatter S, et al. Chemical basis for the disparate neuroprotective effects of the anthocyanins, callistephin and kuromanin, against nitrosative stress. Free Radic Biology Medicine. 2016;103:23–34.
  • Dreiseitel A, Schreier P, Oehme A, et al. Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem Bioph Res Co. 2008;372:57–61.
  • Parkesh R, Lewis AM, Aley PK, et al. Cell-permeant NAADP: a novel chemical tool enabling the study of Ca2+ signalling in intact cells. Cell Calcium. 2008;43:531–538.
  • Funaro A, Reinis M, Trubiani O, et al. CD38 functions are regulated through an internalization step. J Immunol Baltim Md. 1950;1998(160):2238–2247.
  • Zocchi E, Usai C, Guida L, et al. Ligand‐induced internalization of CD38 results in intracellular Ca 2+ mobilization: role of NAD + transport across cell membranes. Faseb J. 1999;13:273–283.
  • Kang J, Park K-H, Kim -J-J, et al. The role of CD38 in Fcγ receptor (FcγR)-mediated phagocytosis in murine macrophages. J Biological Chem. 2012;287:14502–14514.
  • Linden J, Koch-Nolte F, Purine Release DG. Metabolism, and signaling in the inflammatory response. Annu Rev Immunol. 2019;37:325–347.
  • Zhao YJ, Zhu WJ, Wang XW, et al. Determinants of the membrane orientation of a calcium signaling enzyme CD38. Biochimica Et Biophysica Acta Bba. Mol Cell Res. 2015;1853:2095–2103.
  • Lin WK, Bolton E, Maciejewska M, et al. Intracellular CD38 Mediates Cardiac Synthesis of NAADP and CADPR. Biophys J. 2016;110:262a.
  • Xu M, Li -X-X, Ritter JK, et al. Contribution of NADPH Oxidase to Membrane CD38 Internalization and Activation in Coronary Arterial Myocytes. PLoS One. 2013;8:e71212.
  • Chini EN, Chini CCS, Netto JME, et al. The Pharmacology of CD38/NADase: an Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol Sci. 2018;39:424–436.
  • Fang C, Li T, Li Y, et al. CD38 produces nicotinic acid adenosine dinucleotide phosphate in the lysosome. J Biological Chem. 2018;293:8151–8160.
  • Lischke T, Heesch K, Schumacher V, et al. CD38 controls the innate immune response against Listeria monocytogenes Bäumler AJ, editor. Infect Immun. 2013;81:4091–4099.
  • Lund FE. Signaling Properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. Mol Med. 2006;12:328–333.
  • Partida-Sánchez S, Randall TD, Lund FE. Innate immunity is regulated by CD38, an ecto-enzyme with ADP-ribosyl cyclase activity. Microbes Infect. 2003;5:49–58.
  • Schneider M, Schumacher V, Lischke T, et al. CD38 is expressed on inflammatory cells of the intestine and promotes intestinal inflammation. PLoS One. 2015;10:e0126007.
  • Matalonga J, Glaria E, Bresque M, et al. The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD metabolism. Cell Rep. 2017;18:1241–1255.
  • Amici SA, Young NA, Narvaez-Miranda J, et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions. Front Immunol. 2018;9:1593.
  • Wang X, Song J, Wu Z, et al. Dual Roles of CD38 in Autophagy. Yangtze Medicine. 2017;01:8–19.
  • Rah S, Lee Y, Kim U. NAADP‐mediated Ca 2+ signaling promotes autophagy and protects against LPS‐induced liver injury. Faseb J. 2017;31:3126–3137.
  • Wilson HL, Dipp M, Thomas JM, et al. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase act as a redox sensor: a PRIMARY ROLE FOR CYCLIC ADP-RIBOSE IN HYPOXIC PULMONARY VASOCONSTRICTION. J Biol Chem. 2000;276:11180–11188.
  • Zhang AY, Yi F, Teggatz EG, et al. Enhanced production and action of cyclic ADP–ribose during oxidative stress in small bovine coronary arterial smooth muscle. Microvasc Res. 2004;67:159–167.
  • Zhang X, Cheng X, Yu L, et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat Commun. 2016;7:12109.
  • Samie M, Wang X, Zhang X, et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell. 2013;26:511–524.
  • DeLeo FR, Allen LA, Apicella M, et al. NADPH oxidase activation and assembly during phagocytosis. J Immunol Baltim Md. 1999;163:6732–6740.
  • Slauch JM. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol. 2011;80:580–583.
  • Vejražka M, Míček R, Štípek S. Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells Biochimica et Biophysica Acta (BBA). General Subjects. 2005;1722. DOI:https://doi.org/10.1016/j.bbagen.2004.12.008
  • Augsburger F, Filippova A, Rasti D, et al. Pharmacological characterization of the seven human NOX isoforms and their inhibitors. Redox Biol. 2019;26:101272.
  • Petrônio M, Zeraik M, Fonseca L, et al. Chemical and biophysical properties of a NADPH Oxidase Inhibitor. Molecules 2013;18:2821–2839.
  • Heumüller S, Wind S, Barbosa-Sicard E, et al. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 2008;51:211–217.
  • Davis LC, Morgan AJ, Galione A. NAADP ‐regulated two‐pore channels drive phagocytosis through endo‐lysosomal Ca 2+ nanodomains, calcineurin and dynamin. Embo J. 2020;e104058. DOI:https://doi.org/10.15252/embj.2019104058
  • Marks DL, Holicky EL, Wheatley CL, et al. Role of protein kinase d in Golgi exit and lysosomal targeting of the transmembrane protein, Mcoln1. Traffic 2012;13:565 575.
  • Park D-R, Nam T-S, Kim Y-W, et al. Oxidative activation of type III CD38 by NADPH oxidase–derived hydrogen peroxide in Ca 2+ signaling. Faseb J. 2018;33:3404–3419.
  • Wang H, Wang N, Xu D, et al. Oxidation of multiple MiT/TFE transcription factors links oxidative stress to transcriptional control of autophagy and lysosome biogenesis. Autophagy 2019;1–14. DOI:https://doi.org/10.1080/15548627.2019.1704104.
  • Brady OA, Martina JA, Puertollano R. Emerging roles for TFEB in the immune response and inflammation. Autophagy 2018;14:1–9.
  • Vural A, Al-Khodor S, Cheung GYC, et al. Activator of G-protein signaling 3–induced lysosomal biogenesis limits macrophage intracellular bacterial infection. J Immunol. 2016;196:846–856.
  • Singh N, Kansal P, Ahmad Z, et al. Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis. Autophagy 2018;14:1–20.
  • Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol. 2016;17:677–686.
  • Evans TD, Jeong S-J, Zhang X, et al. B and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 2018;14:724–726.
  • Sergin I, Evans TD, Zhang X, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun. 2017;8:15750.
  • Emanuel R, Sergin I, Bhattacharya S, et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arteriosclerosis Thrombosis Vasc Biology. 2014;34:1942–1952.
  • Blasi E, Radzioch D, Merletti L, et al. Generation of macrophage cell line from fresh bone marrow cells with a myc/raf recombinant retrovirus. Cancer Biochem Bioph. 1989;10:303–317.
  • Settembre C, Malta CD, Polito VA, et al. TFEB Links Autophagy to Lysosomal Biogenesis. Science 2011;332:1429–1433.
  • McQuin C, Goodman A, Chernyshev V, et al. CellProfiler 3.0: next-generation image processing for biology. Misteli T, editor. Plos Biol. 2018;16:e2005970.
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–682.
  • Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–419.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
  • Kucukural A, Yukselen O, Ozata DM, et al. DEBrowser: interactive differential expression analysis and visualization tool for count data. BMC Genomics. 2019;20:6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.