999
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

HSPA8 regulates anti-bacterial autophagy through liquid-liquid phase separation

, , , , , , , , & ORCID Icon show all
Pages 2702-2718 | Received 26 Oct 2022, Accepted 06 Jun 2023, Published online: 13 Jun 2023

References

  • Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379–404. doi:10.1007/s12192-016-0676-6.
  • Stricher F, Macri C, Ruff M, et al. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy. 2013;9(12):1937–1954. doi:10.4161/auto.26448
  • Flaherty KM, DeLuca-Flaherty C, McKay DB. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature. 1990;346(6285):623–628. doi:10.1038/346623a0.
  • Kityk R, Kopp J, Sinning I, et al. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell. 2012;48(6):863–874. doi:10.1016/j.molcel.2012.09.023
  • Moro F, Fernandez-Saiz V, Muga A. The lid subdomain of DnaK is required for the stabilization of the substrate-binding site. J Biol Chem. 2004;279(19):19600–19606. doi:10.1074/jbc.M400921200.
  • Bertelsen EB, Zhou H, Lowry DF, et al. Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution. Protein Sci. 1999;8(2):343–354. doi:10.1110/ps.8.2.343.
  • Matsui H, Asou H, Inaba T. Cytokines direct the regulation of Bim mRNA stability by heat-shock cognate protein 70. Mol Cell. 2007;25(1):99–112. doi:10.1016/j.molcel.2006.12.007.
  • Page N, Schall N, Strub JM, et al. The spliceosomal phosphopeptide P140 controls the lupus disease by interacting with the HSC70 protein and via a mechanism mediated by γδ T cells. PLoS ONE. 2009;4(4):e5273. doi:10.1371/journal.pone.0005273
  • Sharma V, Verma S, Seranova E, et al. Selective autophagy and xenophagy in infection and disease. Front Cell Dev Biol. 2018;6:147. doi:10.3389/fcell.2018.00147.
  • Miao C, Yu M, Pei G, et al. An infection-induced RhoB-Beclin 1-Hsp90 complex enhances clearance of uropathogenic Escherichia coli. Nat Commun. 2021;12(1):2587. doi:10.1038/s41467-021-22726-8
  • Wu S, Shen Y, Zhang S, et al. Salmonella interacts with autophagy to offense or defense. Front Microbiol. 2020;11:721. doi:10.3389/fmicb.2020.00721.
  • Noad J, von der Malsburg A, Pathe C, et al. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat Microbiol. 2017;2(7):17063. doi:10.1038/nmicrobiol.2017.63.
  • Xu Y, Zhou P, Cheng S, et al. A bacterial effector reveals the V-ATPase-ATG16L1 axis that initiates xenophagy. Cell. 2019;178(3):552–566.e20. doi:10.1016/j.cell.2019.06.007
  • Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–766. doi:10.1016/j.cell.2004.11.038
  • Ogawa M, Yoshimori T, Suzuki T, et al. Escape of intracellular Shigella from autophagy. Science. 2005;307(5710):727–731. doi:10.1126/science.1106036
  • Kampinga HH, Craig EA. The HSP70 chaperone machinery: j proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–592. doi:10.1038/nrm2941.
  • Matsumura Y, Sakai J, Skach WR. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem. 2013;288(43):31069–31079. doi:10.1074/jbc.M113.479345.
  • Rauch JN, Zuiderweg ER, Gestwicki JE. Non-canonical Interactions between heat shock cognate protein 70 (Hsc70) and Bcl2-associated anthanogene (BAG) Co-chaperones are important for client release. J Biol Chem. 2016;291(38):19848–19857. doi:10.1074/jbc.M116.742502.
  • Brooks D, Naeem F, Stetsiv M, et al. Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover. PLoS Genet. 2020;16(4):e1008700. doi:10.1371/journal.pgen.1008700
  • Desideri E, Castelli S, Dorard C, et al. Impaired degradation of YAP1 and IL6ST by chaperone-mediated autophagy promotes proliferation and migration of normal and hepatocellular carcinoma cells. Autophagy. 2022;19(1):1–11. doi:10.1080/15548627.2022.2063004
  • Schnebert S, Goguet M, Velez EJ, et al. Diving into the evolutionary history of HSC70-linked selective autophagy pathways: endosomal microautophagy and chaperone-mediated autophagy. Cells. 2022;11(12):11. doi:10.3390/cells11121945
  • Morozova K, Clement CC, Kaushik S, et al. Structural and biological interaction of hsc-70 protein with phosphatidylserine in endosomal microautophagy. J Biol Chem. 2016;291(35):18096–18106. doi:10.1074/jbc.M116.736744
  • Chen BH, Chang YJ, Lin S, et al. Hsc70/Stub1 promotes the removal of individual oxidatively stressed peroxisomes. Nat Commun. 2020;11(1):5267. doi:10.1038/s41467-020-18942-3
  • Li Y, Xue Y, Xu X, et al. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity. Embo J. 2019;38(3):38. doi:10.15252/embj.201798786
  • van der Lee R, Buljan M, Lang B, et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114(13):6589–6631. doi:10.1021/cr400525m
  • Young JC, Agashe VR, Siegers K, et al. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5(10):781–791. doi:10.1038/nrm1492
  • Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285–298. doi:10.1038/nrm.2017.7
  • Ramella M, Ribolla LM, de Curtis I. Liquid–liquid phase separation at the plasma membrane–cytosol interface: common players in adhesion, motility, and synaptic function. J Mol Biol. 2022;434(1):167228. doi:10.1016/j.jmb.2021.167228.
  • Zhu J, Zhou Q, Xia Y, et al. GIT/PIX condensates are modular and ideal for distinct compartmentalized cell signaling. Mol Cell. 2020;79(5):782–96 e6. doi:10.1016/j.molcel.2020.07.004
  • Gamerdinger M, Hajieva P, Kaya AM, et al. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. Embo J. 2009;28(7):889–901. doi:10.1038/emboj.2009.29
  • Agarraberes FA, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Bio. 1997;137(4):825–834. doi:10.1083/jcb.137.4.825.
  • Sharif T, Martell E, Dai C, et al. Phosphoglycerate dehydrogenase inhibition induces p-Mtor-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death Dis. 2018;9(10):990. doi:10.1038/s41419-018-0997-8
  • Shi J, Zhou L, Huang HS, et al. Repurposing oxiconazole against colorectal cancer via PRDX2-mediated autophagy arrest. Int J Biol Sci. 2022;18(9):3747–3761. doi:10.7150/ijbs.70679
  • Zheng X, Wei J, Li W, et al. PRDX2 removal inhibits the cell cycle and autophagy in colorectal cancer cells. Aging. 2020;12(16):16390–16409. doi:10.18632/aging.103690
  • Yi W, Zhu R, Hou X, et al. Integrated analysis reveals S100a8/a9 regulates autophagy and apoptosis through the MAPK and PI3K-AKT signaling pathway in the early stage of myocardial infarction. Cells. 2022;11(12):11. doi:10.3390/cells11121911.
  • Chen H, Huang J, Chen C, et al. NGFR increases the chemosensitivity of colorectal cancer cells by enhancing the apoptotic and autophagic effects of 5-fluorouracil via the activation of S100A9. Front Oncol. 2021;11:652081. doi:10.3389/fonc.2021.652081.
  • Stewart HJS, Chaudry S, Crichlow A, et al. BET inhibition suppresses S100A8 and S100A9 expression in acute myeloid leukemia cells and synergises with daunorubicin in causing cell death. Bone Marrow Res. 2018;2018:5742954. doi: 10.1155/2018/5742954.
  • Wang YT, Liu TY, Shen CH, et al. K48/K63-linked polyubiquitination of ATG9A by TRAF6 E3 ligase regulates oxidative stress-induced autophagy. Cell Rep. 2022;38(8):110354. doi:10.1016/j.celrep.2022.110354
  • Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3(5):452–460. doi:10.4161/auto.4451.
  • Xu C, Liu J, Hsu LC, et al. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. Faseb J. 2011;25(8):2700–2710. doi:10.1096/fj.10-167676
  • Herrera-Uribe J, Zaldivar-Lopez S, Aguilar C, et al. Regulatory role of microRNA in mesenteric lymph nodes after Salmonella typhimurium infection. Vet Res. 2018;49(1):9. doi:10.1186/s13567-018-0506-1
  • Tsuboi N, Ishikawa M, Tamura Y, et al. Monoclonal antibody specifically reacting against 73-kilodalton heat shock cognate protein: possible expression on mammalian cell surface. Hybridoma. 1994;13(5):373–381. doi:10.1089/hyb.1994.13.373
  • Watanabe K, Tachibana M, Tanaka S, et al. Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion. BMC Microbiol. 2008;8(1):212. doi:10.1186/1471-2180-8-212
  • Dores-Silva PR, Cauvi DM, Coto ALS, et al. Human heat shock cognate protein (HSC70/HSPA8) interacts with negatively charged phospholipids by a different mechanism than other HSP70s and brings HSP90 into membranes. Cell Stress Chaperones. 2021;26(4):671–684. doi:10.1007/s12192-021-01210-8
  • Gorovits BM, Horowitz PM. The molecular chaperonin cpn60 displays local flexibility that is reduced after binding with an unfolded protein. J Biol Chem. 1995;270(22):13057–13062. doi:10.1074/jbc.270.22.13057.
  • Lindner RA, Kapur A, Mariani M, et al. Structural alterations of alpha-crystallin during its chaperone action. Eur J Biochem. 1998;258(1):170–183. doi:10.1046/j.1432-1327.1998.2580170.x
  • Yang S, Liu L, Cao C, et al. USP52 acts as a deubiquitinase and promotes histone chaperone ASF1A stabilization. Nat Commun. 2018;9(1):1285. doi:10.1038/s41467-018-03588-z
  • Tao W, Zhao D, Li G, et al. Artificial tumor microenvironment regulated by first hemorrhage for enhanced tumor targeting and then occlusion for synergistic bioactivation of hypoxia-sensitive platesomes. Acta Pharm Sin B. 2022;12(3):1487–1499. doi:10.1016/j.apsb.2021.08.010
  • Dong X, Yang Y, Zou Z, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2021;589(7842):456–461. doi:10.1038/s41586-020-03056-z
  • Xu DQ, Wang Z, Wang CY, et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. Embo J. 2016;35(5):496–514. doi:10.15252/embj.201592864
  • Yan X, Li Y, Wang G, et al. Molecular basis for recognition of Gly/N-degrons by CRL2(ZYG11B) and CRL2(ZER1). Mol Cell. 2021;81(16):3262–74 e3. doi:10.1016/j.molcel.2021.06.010
  • Lu Y, Sun Y, Liu Z, et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci Transl Med. 2020;12(554):12. doi:10.1126/scitranslmed.aba3613
  • Sun X, Yang J, Deng X, et al. Interactions of bacterial toxin CNF1 and Host JAK1/2 driven by liquid-liquid phase separation enhance macrophage polarization. MBio. 2022;13(4):e0114722. doi:10.1128/mbio.01147-22
  • Pang Y, Cheng Z, Zhang S, et al. Bladder epithelial cell phosphate transporter inhibition protects mice against uropathogenic Escherichia coli infection. Cell Rep. 2022;39(3):110698. doi:10.1016/j.celrep.2022.110698

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.