2,447
Views
0
CrossRef citations to date
0
Altmetric
Review

Interplay of energy metabolism and autophagy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4-14 | Received 01 Jul 2022, Accepted 31 Jul 2023, Published online: 18 Aug 2023

References

  • Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol. 2014 Dec;36:79–90. doi: 10.1016/j.semcdb.2014.09.011
  • He C. Balancing nutrient and energy demand and supply via autophagy. Curr Biol. 2022 Jun 20;32(12):R684–r696. doi: 10.1016/j.cub.2022.04.071
  • Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010 Dec 3;330(6009):1344–1348. doi: 10.1126/science.1193497
  • Kraft C, Deplazes A, Sohrmann M, et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol. 2008 May;10(5):602–610. doi: 10.1038/ncb1723
  • Karsli-Uzunbas G, Guo JY, Price S, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 2014 Aug;4(8):914–927. doi: 10.1158/2159-8290.CD-14-0363
  • Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004 Dec 23;432(7020):1032–1036. doi: 10.1038/nature03029
  • Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem. 2006 Oct 6;281(40):29776–29787. doi: 10.1074/jbc.M603783200
  • Rodriguez OC, Choudhury S, Kolukula V, et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle. 2012 Dec 1;11(23):4436–4446. doi: 10.4161/cc.22778
  • Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. J Cell Bio. 1962 Jan;12(1):198–202. doi: 10.1083/jcb.12.1.198
  • Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Bio. 1967 Nov;35(2):C11–6. doi: 10.1083/jcb.35.2.C11
  • Takeshige K, Baba M, Tsuboi S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Bio. 1992 Oct;119(2):301–311. doi: 10.1083/jcb.119.2.301
  • Yi C, Tong J, Lu P, et al. Formation of a Snf1-Mec1-Atg1 Module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Dev Cell. 2017 Apr 10;41(1):59–71.e4. doi: 10.1016/j.devcel.2017.03.007
  • Yao W, Li Y, Wu L, et al. Atg11 is required for initiation of glucose starvation-induced autophagy. Autophagy. 2020 Dec;16(12):2206–2218. doi: 10.1080/15548627.2020.1719724
  • Miller-Fleming L, Antas P, Pais TF, et al. Yeast DJ-1 superfamily members are required for diauxic-shift reprogramming and cell survival in stationary phase. Proc Natl Acad Sci U S A. 2014 May 13;111(19):7012–7017. doi: 10.1073/pnas.1319221111
  • Adachi A, Koizumi M, Ohsumi Y. Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression. J Biol Chem. 2017 Dec 1;292(48):19905–19918. doi: 10.1074/jbc.M117.817510
  • Yokota H, Gomi K, Shintani T. Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2017 Jan 29;483(1):522–527. doi: 10.1016/j.bbrc.2016.12.112
  • Weber CA, Sekar K, Tang JH, et al. β-Oxidation and autophagy are critical energy providers during acute glucose depletion in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12239–12248. doi: 10.1073/pnas.1913370117
  • Wang CW, Miao YH, Chang YS. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Bio. 2014 Aug 4;206(3):357–366. doi: 10.1083/jcb.201404115
  • Tsuji T, Fujimoto M, Tatematsu T, et al. Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole. Elife. 2017 Jun 7;6:e25960. doi: 10.7554/eLife.25960
  • Zheng L, Shu WJ, Li YM, et al. The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy. Autophagy. 2020 Aug;16(8):1366–1379. doi: 10.1080/15548627.2019.1668228
  • Iwama R, Ohsumi Y. Analysis of autophagy activated during changes in carbon source availability in yeast cells. J Biol Chem. 2019 Apr 5;294(14):5590–5603. doi: 10.1074/jbc.RA118.005698
  • Chen MH, Liu LF, Chen YR, et al. Expression of alpha-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J. 1994 Nov;6(5):625–636. doi: 10.1046/j.1365-313X.1994.6050625.x
  • Moriyasu Y, Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 1996 Aug;111(4):1233–1241. doi: 10.1104/pp.111.4.1233
  • Hanaoka H, Noda T, Shirano Y, et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002 Jul;129(3):1181–1193. doi: 10.1104/pp.011024
  • Izumi M, Wada S, Makino A, et al. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiol. 2010 Nov;154(3):1196–1209. doi: 10.1104/pp.110.158519
  • Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011 Feb;13(2):132–141. doi: 10.1038/ncb2152
  • Gammoh N, Florey O, Overholtzer M, et al. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat Struct Mol Biol. 2013 Feb;20(2):144–149. doi: 10.1038/nsmb.2475
  • Cheong H, Lindsten T, Wu J, et al. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11121–11126. doi: 10.1073/pnas.1107969108
  • McAlpine F, Williamson LE, Tooze SA, et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy. 2013 Mar;9(3):361–373. doi: 10.4161/auto.23066
  • Zaman S, Lippman SI, Zhao X, et al. How Saccharomyces responds to nutrients. Ann Rev Genet. 2008;42(1):27–81. doi: 10.1146/annurev.genet.41.110306.130206
  • Turcotte B, Liang XB, Robert F, et al. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res. 2010 Feb;10(1):2–13. doi: 10.1111/j.1567-1364.2009.00555.x
  • Kayikci Ö, Nielsen J, Bolotin-Fukuhara M. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 2015 Sep;15(6):fov068. doi: 10.1093/femsyr/fov068
  • Seo AY, Lau PW, Feliciano D, et al. AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation. Elife. 2017 Apr 10;6. doi:10.7554/eLife.21690.
  • Lang MJ, Martinez-Marquez JY, Prosser DC, et al. Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J Biol Chem. 2014 Jun 13;289(24):16736–16747. doi: 10.1074/jbc.M113.525782
  • Corral-Ramos C, Barrios R, Ayté J, et al. TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast. Autophagy. 2022 Feb;18(2):375–390. doi: 10.1080/15548627.2021.1935522
  • Oku M, Maeda Y, Kagohashi Y, et al. Evidence for ESCRT- and clathrin-dependent microautophagy. J Cell Bio. 2017 Oct 2;216(10):3263–3274. doi: 10.1083/jcb.201611029
  • Dickinson JR, Schweizer M, editors. The metabolism and molecular physiology of Saccharomyces cerevisiae. New York: Taylor & Francis; 1999.
  • Kumar R, Rahman MA, Nazarko TY. Nitrogen starvation and stationary phase lipophagy have distinct molecular mechanisms. Int J Mol Sci. 2020 Nov 29;21(23):9094. doi: 10.3390/ijms21239094
  • Kumar R, Shroff A, Nazarko TY. Komagataella phaffii Cue5 piggybacks on lipid droplets for its vacuolar degradation during stationary phase lipophagy. Cells. 2022 Jan 10;11(2):215. doi: 10.3390/cells11020215
  • Yamashita S, Yurimoto H, Murakami D, et al. Lag-phase autophagy in the methylotrophic yeast pichia pastoris. Genes Cells. 2009 Jul;14(7):861–870. doi: 10.1111/j.1365-2443.2009.01316.x
  • Ashe MP, De Long SK, Sachs AB, et al. Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell. 2000 Mar;11(3):833–848. doi: 10.1091/mbc.11.3.833
  • Aoh QL, Hung CW, Duncan MC, et al. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell. 2013 Mar;24(6):832–847. doi: 10.1091/mbc.e12-10-0750
  • Michaeli S, Honig A, Levanony H, et al. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell. 2014 Oct;26(10):4084–4101. doi: 10.1105/tpc.114.129999
  • Honig A, Avin-Wittenberg T, Ufaz S, et al. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell. 2012 Jan;24(1):288–303. doi: 10.1105/tpc.111.093112
  • Yao W, Li Y, Chen Y, et al. Mec1 regulates PAS recruitment of Atg13 via direct binding with Atg13 during glucose starvation-induced autophagy. Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2215126120. doi: 10.1073/pnas.2215126120
  • Wu C, Yao W, Kai W, et al. Mitochondrial fusion machinery specifically involved in energy deprivation-induced autophagy. Front Cell Dev Biol. 2020;8:221. doi: 10.3389/fcell.2020.00221
  • Hatano T, Morigasaki S, Tatebe H, et al. Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose. Cell Cycle. 2015;14(6):848–856. doi: 10.1080/15384101.2014.1000215
  • Kurokawa Y, Konishi R, Yoshida A, et al. Microautophagy in the yeast vacuole depends on the activities of phosphatidylinositol 4-kinases, Stt4p and Pik1p. Biochim Biophys Acta Biomembr. 2020 Nov 1;1862(11):183416. doi: 10.1016/j.bbamem.2020.183416
  • Toulmay A, Prinz WA. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J Cell Bio. 2013 Jul 8;202(1):35–44. doi: 10.1083/jcb.201301039
  • Zhang A, Meng Y, Li Q, et al. The endosomal sorting complex required for transport complex negatively regulates Erg6 degradation under specific glucose restriction conditions. Traffic. 2020 Jul;21(7):488–502. doi: 10.1111/tra.12732
  • Li Y, Chen Y. AMPK and autophagy. In: Qin Z-H, editor. Autophagy: biology and diseases: basic Science. Singapore: Springer Singapore; 2019. pp. 85–108. doi: 10.1007/978-981-15-0602-4_4
  • Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011 Sep 2;13(9):1016–1023. doi: 10.1038/ncb2329
  • Salt IP, Johnson G, Ashcroft SJ, et al. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J. 1998 Nov 1;335(Pt 3):533–9. doi: 10.1042/bj3350533
  • Oakhill JS, Chen ZP, Scott JW, et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19237–19241. doi: 10.1073/pnas.1009705107
  • Zhang CS, Hawley SA, Zong Y, et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 2017 Aug 3;548(7665):112–116. doi: 10.1038/nature23275
  • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008 Apr 25;30(2):214–226. doi: 10.1016/j.molcel.2008.03.003
  • Inoki K, Li Y, Xu T, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003 Aug 1;17(15):1829–1834. doi: 10.1101/gad.1110003
  • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003 Nov 26;115(5):577–590. doi: 10.1016/S0092-8674(03)00929-2
  • Lee MN, Ha SH, Kim J, et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol. 2009 Jul;29(14):3991–4001. doi: 10.1128/MCB.00165-09
  • Zheng M, Wang YH, Wu XN, et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol. 2011 Mar;13(3):263–272. doi: 10.1038/ncb2168
  • Efeyan A, Zoncu R, Chang S, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 2013 Jan 31;493(7434):679–683. doi: 10.1038/nature11745
  • Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009 May 29;137(5):873–886. doi: 10.1016/j.cell.2009.03.046
  • Zhao Y, Xiong X, Sun Y. DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(βTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell. 2011 Oct 21;44(2):304–316. doi: 10.1016/j.molcel.2011.08.029
  • Roberts DJ, Tan-Sah VP, Ding EY, et al. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell. 2014 Feb 20;53(4):521–533. doi: 10.1016/j.molcel.2013.12.019
  • Eng CH, Yu K, Lucas J, et al. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal. 2010 Apr 27;3(119):ra31. doi: 10.1126/scisignal.2000911
  • Vicinanza M, Korolchuk VI, Ashkenazi A, et al. PI(5)P regulates autophagosome biogenesis. Mol Cell. 2015 Jan 22;57(2):219–234. doi: 10.1016/j.molcel.2014.12.007
  • Polson HE, de Lartigue J, Rigden DJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010 May;6(4):506–522. doi: 10.4161/auto.6.4.11863
  • Ren C, Liu J, Gong Q. Functions of autophagy in plant carbon and nitrogen metabolism. Front Plant Sci. 2014;5:301. doi: 10.3389/fpls.2014.00301
  • Araújo WL, Tohge T, Ishizaki K, et al. Protein degradation - an alternative respiratory substrate for stressed plants. Trends Plant Sci. 2011 Sep;16(9):489–498. doi: 10.1016/j.tplants.2011.05.008
  • Thompson AR, Doelling JH, Suttangkakul A, et al. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 2005 Aug;138(4):2097–2110. doi: 10.1104/pp.105.060673
  • Xiong Y, Contento AL, Bassham DC. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005 May;42(4):535–546. doi: 10.1111/j.1365-313X.2005.02397.x
  • Phillips AR, Suttangkakul A, Vierstra RD. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics. 2008 Mar;178(3):1339–1353. doi: 10.1534/genetics.107.086199
  • Yang C, Shen W, Yang L, et al. HY5-HDA9 module transcriptionally regulates Plant autophagy in response to light-to-dark conversion and nitrogen starvation. Mol Plant. 2020 Mar 2;13(3):515–531. doi: 10.1016/j.molp.2020.02.011
  • Wu J, Michaeli S, Picchianti L, et al. ATI1 (ATG8-interacting protein 1) and ATI2 define a plant starvation-induced reticulophagy pathway and serve as MSBP1/MAPR5 cargo receptors. Autophagy. 2021 Nov;17(11):3375–3388. doi: 10.1080/15548627.2021.1872886
  • Gou M, Ran X, Martin DW, et al. The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nat Plants. 2018 May;4(5):299–310. doi: 10.1038/s41477-018-0142-9
  • Izumi M, Nakamura S, Li N. Autophagic turnover of chloroplasts: its roles and regulatory mechanisms in response to sugar starvation. Front Plant Sci. 2019;10:280. doi: 10.3389/fpls.2019.00280
  • Ishida H, Wada S. Autophagy of whole and partial chloroplasts in individually darkened leaves: a unique system in plants? Autophagy. 2009 Jul;5(5):736–737. doi: 10.4161/auto.5.5.8568
  • Izumi M, Hidema J, Wada S, et al. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiol. 2015 Apr;167(4):1307–1320. doi: 10.1104/pp.114.254078
  • Üstün S, Hafrén A, Hofius D. Autophagy as a mediator of life and death in plants. Curr Opin Plant Biol. 2017 Dec;40:122–130. doi: 10.1016/j.pbi.2017.08.011
  • Teper-Bamnolker P, Danieli R, Peled-Zehavi H, et al. Vacuolar processing enzyme translocates to the vacuole through the autophagy pathway to induce programmed cell death. Autophagy. 2021 Oct;17(10):3109–3123. doi: 10.1080/15548627.2020.1856492
  • Roa-Mansergas X, Fadó R, Atari M, et al. CPT1C promotes human mesenchymal stem cells survival under glucose deprivation through the modulation of autophagy. Sci Rep. 2018 May 3;8(1):6997. doi: 10.1038/s41598-018-25485-7
  • Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 2015 Jun;17(6):759–770. doi: 10.1038/ncb3166
  • Takagi A, Kume S, Kondo M, et al. Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Sci Rep. 2016 Jan 6;6(1):18944. doi: 10.1038/srep18944
  • Li Y, Chao X, Yang L, et al. Impaired fasting-induced adaptive lipid droplet Biogenesis in liver-specific Atg5-deficient mouse liver is mediated by persistent nuclear factor-like 2 activation. Am J Pathol. 2018 Aug;188(8):1833–1846. doi: 10.1016/j.ajpath.2018.04.015
  • Shelley HJ, Bassett JM, Milner RD. Control of carbohydrate metabolism in the fetus and newborn. Br Med Bull. 1975 Jan;31(1):37–43. doi: 10.1093/oxfordjournals.bmb.a071239
  • Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen autophagy in glucose homeostasis. Pathol Res Pract. 2006;202(9):631–638. doi: 10.1016/j.prp.2006.04.001
  • Schiaffino S, Hanzlíková V. Autophagic degradation of glycogen in skeletal muscles of the newborn rat. J Cell Bio. 1972 Jan;52(1):41–51. doi: 10.1083/jcb.52.1.41
  • Kaushik S, Rodriguez-Navarro JA, Arias E, et al. Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab. 2011 Aug 3;14(2):173–183. doi: 10.1016/j.cmet.2011.06.008
  • Oh TS, Cho H, Cho JH, et al. Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy. 2016 Nov;12(11):2009–2025. doi: 10.1080/15548627.2016.1215382
  • He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012 Jan 18;481(7382):511–515. doi: 10.1038/nature10758
  • Liu Y, Nguyen PT, Wang X, et al. TLR9 and beclin 1 crosstalk regulates muscle AMPK activation in exercise. Nature. 2020 Feb;578(7796):605–609. doi: 10.1038/s41586-020-1992-7
  • Pietrocola F, Pol J, Vacchelli E, et al. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell. 2016 Jul 11;30(1):147–160. doi: 10.1016/j.ccell.2016.05.016
  • Martins I, Wang Y, Michaud M, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014 Jan;21(1):79–91. doi: 10.1038/cdd.2013.75
  • Mizushima N. Autophagy: process and function. Genes Dev. 2007 Nov 15;21(22):2861–2873. doi: 10.1101/gad.1599207
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008 Jan 11;132(1):27–42. doi: 10.1016/j.cell.2007.12.018
  • Wang P, Shao BZ, Deng Z, et al. Autophagy in ischemic stroke. Prog Neurobiol. 2018 Apr-May;163-164:98–117.
  • Ajoolabady A, Wang S, Kroemer G, et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharmacol Ther. 2021 Sep;225:107848.
  • Wang P, Guan YF, Du H, et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012 Jan;8(1):77–87. doi: 10.4161/auto.8.1.18274
  • Liu Y, Xue X, Zhang H, et al. Neuronal-targeted TFEB rescues dysfunction of the autophagy-lysosomal pathway and alleviates ischemic injury in permanent cerebral ischemia. Autophagy. 2019 Mar;15(3):493–509. doi: 10.1080/15548627.2018.1531196
  • Xu ZQ, Zhang JJ, Kong N, et al. Autophagy is involved in neuroprotective effect of Alpha7 nicotinic acetylcholine receptor on ischemic stroke. Front Pharmacol. 2021;12:676589. doi: 10.3389/fphar.2021.676589
  • Rami A, Kögel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy. 2008 May;4(4):422–426. doi: 10.4161/auto.5778
  • Wang JF, Mei ZG, Fu Y, et al. Puerarin protects rat brain against ischemia/reperfusion injury by suppressing autophagy via the AMPK-mTOR-ULK1 signaling pathway. Neural Regen Res. 2018 Jun;13(6):989–998. doi: 10.4103/1673-5374.233441
  • Zhang X, Yan H, Yuan Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013 Sep;9(9):1321–1333. doi: 10.4161/auto.25132
  • Qin AP, Liu CF, Qin YY, et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy. 2010 Aug;6(6):738–753. doi: 10.4161/auto.6.6.12573
  • Pei X, Li Y, Zhu L, et al. Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis. Cell Cycle. 2020 Apr;19(8):906–917. doi: 10.1080/15384101.2020.1731649
  • Aisa Z, Liao GC, Shen XL, et al. Effect of autophagy on myocardial infarction and its mechanism. Eur Rev Med Pharmacol Sci. 2017 Aug;21(16):3705–3713.
  • Kanamori H, Takemura G, Goto K, et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am J Physiol Heart Circ Physiol. 2011 Jun;300(6):H2261–71. doi: 10.1152/ajpheart.01056.2010
  • Yan L, Vatner DE, Kim SJ, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13807–13812. doi: 10.1073/pnas.0506843102
  • Sun X, Momen A, Wu J, et al. p27 protein protects metabolically stressed cardiomyocytes from apoptosis by promoting autophagy. J Biol Chem. 2014 Jun 13;289(24):16924–16935. doi: 10.1074/jbc.M113.542795
  • Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007 Mar 30;100(6):914–922. doi: 10.1161/01.RES.0000261924.76669.36
  • Sciarretta S, Zhai P, Shao D, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012 Mar 6;125(9):1134–1146. doi: 10.1161/CIRCULATIONAHA.111.078212
  • Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009 Oct 9;284(41):28319–28331. doi: 10.1074/jbc.M109.024406
  • Troncoso R, Vicencio JM, Parra V, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res. 2012 Feb 1;93(2):320–329. doi: 10.1093/cvr/cvr321
  • Aki T, Yamaguchi K, Fujimiya T, et al. Phosphoinositide 3-kinase accelerates autophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cell line H9c2. Oncogene. 2003 Nov 20;22(52):8529–8535. doi: 10.1038/sj.onc.1207197
  • Kriel J, Loos B. The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ. 2019 Mar;26(4):640–652. doi: 10.1038/s41418-018-0267-4
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646–674. doi: 10.1016/j.cell.2011.02.013
  • Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell. 2008 Sep 5;134(5):703–707. doi: 10.1016/j.cell.2008.08.021
  • Goldsmith J, Levine B, Debnath J. Autophagy and cancer metabolism. Methods Enzymol. 2014;542:25–57.
  • Li X, Yu W, Qian X, et al. Nucleus-Translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017 Jun 1;66(5):684–697.e9. doi: 10.1016/j.molcel.2017.04.026
  • Walker A, Singh A, Tully E, et al. Nrf2 signaling and autophagy are complementary in protecting breast cancer cells during glucose deprivation. Free Radic Biol Med. 2018 May 20;120:407–413. doi: 10.1016/j.freeradbiomed.2018.04.009
  • Meng Q, Xu J, Liang C, et al. GPx1 is involved in the induction of protective autophagy in pancreatic cancer cells in response to glucose deprivation. Cell Death Dis. 2018 Dec 11;9(12):1187. doi: 10.1038/s41419-018-1244-z
  • Gretzmeier C, Eiselein S, Johnson GR, et al. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy. 2017 Jun 3;13(6):1064–1075. doi: 10.1080/15548627.2016.1274485

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.