965
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Disrupted endoplasmic reticulum-mediated autophagosomal biogenesis in a Drosophila model of C9-ALS-FTD

ORCID Icon & ORCID Icon
Pages 94-113 | Received 10 Apr 2023, Accepted 11 Aug 2023, Published online: 27 Aug 2023

References

  • Damme M, Suntio T, Saftig P, et al. Autophagy in neuronal cells: general principles and physiological and pathological functions. Acta Neuropathol. 2015 Mar;129(3):337–362. doi: 10.1007/s00401-014-1361-4
  • Maday S. Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res. 2016 Oct 15;1649(Pt B):143–150.
  • Stavoe AKH, Holzbaur ELF. Autophagy in neurons. Annu Rev Cell Dev Biol. 2019 Oct 6;35(1):477–500.
  • Stavoe AKH, Holzbaur ELF. Axonal autophagy: mini-review for autophagy in the CNS. Neurosci Lett. 2019 Apr 1;697:17–23. doi: 10.1016/j.neulet.2018.03.025.
  • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006 Jun 15;441(7095):880–884.
  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013 Aug;19(8):983–997. doi: 10.1038/nm.3232
  • Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: a hunter for aggregates. Int J Mol Sci. 2020 May 10;21(9):3369.
  • Watanabe Y, Taguchi K, Tanaka TM. Ubiquitin, autophagy and neurodegenerative diseases. Cells. 2020 Sep 2;9(9):2022.
  • Maday S, Holzbaur EL. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell. 2014 Jul 14;30(1):71–85. doi: 10.1016/j.devcel.2014.06.001
  • Maday S, Holzbaur EL. Compartment-specific regulation of autophagy in primary neurons. J Neurosci. 2016 Jun 1;36(22):5933–5945.
  • Sung H, Tandarich LC, Nguyen K, et al. Compartmentalized regulation of parkin-mediated mitochondrial quality control in the Drosophila nervous System in vivo. J Neurosci. 2016 Jul 13;36(28):7375–7391.
  • Evans CS, Holzbaur EL. Degradation of engulfed mitochondria is rate-limiting in optineurin-mediated mitophagy in neurons. Elife. 2020 Jan 14; 9. doi: 10.7554/eLife.50260.
  • Johnson DE, Ostrowski P, Jaumouille V, et al. The position of lysosomes within the cell determines their luminal pH. J Cell Bio. 2016 Mar 14;212(6):677–692.
  • Overly CC, Lee KD, Berthiaume E, et al. Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3156–3160.
  • Parton RG, Simons K, Dotti CG. Axonal and dendritic endocytic pathways in cultured neurons. J Cell Bio. 1992 Oct;119(1):123–137. doi: 10.1083/jcb.119.1.123
  • Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Bio. 2012 Feb 20;196(4):407–417.
  • Neisch AL, Neufeld TP, Hays TS. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J Cell Bio. 2017 Feb;216(2):441–461. doi: 10.1083/jcb.201606082
  • Soukup SF, Kuenen S, Vanhauwaert R, et al. A LRRK2-dependent Endophilin A phosphoswitch is critical for macroautophagy at presynaptic terminals. Neuron. 2016 Nov 23;92(4):829–844.
  • Stavoe AK, Hill SE, Hall DH, et al. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell. 2016 Jul 25;38(2):171–185.
  • Vukoja A, Rey U, Petzoldt AG, et al. Presynaptic biogenesis requires axonal transport of lysosome-related vesicles. Neuron. 2018 Sep 19;99(6):1216–1232 e7.
  • Alirezaei M, Kemball CC, Flynn CT, et al. Short-term fasting induces profound neuronal autophagy. Autophagy. 2010 Aug;6(6):702–710. doi: 10.4161/auto.6.6.12376
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010 Apr;22(2):124–131. doi: 10.1016/j.ceb.2009.11.014
  • Young JE, Martinez RA, La Spada AR. Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem. 2009 Jan 23;284(4):2363–2373.
  • Juhasz G, Neufeld TP. Autophagy: a forty-year search for a missing membrane source. PLoS Biol. 2006 Feb;4(2):e36. doi: 10.1371/journal.pbio.0040036
  • Nascimbeni AC, Codogno P, Morel E. Local detection of PtdIns3P at autophagosome biogenesis membrane platforms. Autophagy. 2017 Sep 2;13(9):1602–1612.
  • Tooze SA. Current views on the source of the autophagosome membrane. Essays Biochem. 2013;55:29–38. doi: 10.1042/bse0550029
  • Ozturk Z, O’Kane CJ, Perez-Moreno JJ. Axonal endoplasmic reticulum dynamics and its Roles in neurodegeneration. Front Neurosci. 2020;14:48. doi: 10.3389/fnins.2020.00048
  • Ktistakis NT. ER platforms mediating autophagosome generation. Biochim Biophys Acta, Mol Cell Biol Lipids. 2020 Jan;1865(1):158433. doi: 10.1016/j.bbalip.2019.03.005
  • Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Bio. 2008 Aug 25;182(4):685–701.
  • Melani M, Valko A, Romero NM, et al. Zonda is a novel early component of the autophagy pathway in Drosophila. Mol Biol Cell. 2017 Nov 1;28(22):3070–3081.
  • Nishimura T, Tamura N, Kono N, et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 2017 Jun 14;36(12):1719–1735.
  • Friedman JR, Dibenedetto JR, West M, et al. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell. 2013 Apr;24(7):1030–1040. doi: 10.1091/mbc.e12-10-0733
  • Pankiv S, Alemu EA, Brech A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Bio. 2010 Jan 25;188(2):253–269.
  • Rocha N, Kuijl C, van der Kant R, et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 glued and late endosome positioning. J Cell Bio. 2009 Jun 29;185(7):1209–1225.
  • Nakashima A, Cheng SB, Kusabiraki T, et al. Endoplasmic reticulum stress disrupts lysosomal homeostasis and induces blockade of autophagic flux in human trophoblasts. Sci Rep. 2019 Aug 7;9(1):11466.
  • Esteves T, Durr A, Mundwiller E, et al. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014 Feb 6;94(2):268–277.
  • Montenegro G, Rebelo AP, Connell J, et al. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest. 2012 Feb;122(2):538–544. doi: 10.1172/JCI60560
  • Zhao X, Alvarado D, Rainier S, et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet. 2001 Nov;29(3):326–331. doi: 10.1038/ng758
  • Nishimura AL, Mitne-Neto M, Silva HC, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet. 2004 Nov;75(5):822–831. doi: 10.1086/425287
  • Yamanaka T, Nishiyama R, Shimogori T, et al. Proteomics-based approach identifies altered ER domain properties by ALS-Linked VAPB mutation. Sci Rep. 2020 May 6;10(1):7610.
  • Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013 Nov;9(11):617–628. doi: 10.1038/nrneurol.2013.203
  • Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006 Sep;7(9):710–723. doi: 10.1038/nrn1971
  • Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001 May 31;344(22):1688–1700.
  • Abramzon YA, Fratta P, Traynor BJ, et al. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci. 2020;14:42. doi: 10.3389/fnins.2020.00042
  • Beckers J, Tharkeshwar AK, Van Damme P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy. 2021 Nov;17(11):3306–3322. doi: 10.1080/15548627.2021.1872189
  • Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013 Aug 7;79(3):416–438.
  • Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006 Dec 22;351(3):602–611.
  • Blokhuis AM, Groen EJ, Koppers M, et al. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013 Jun;125(6):777–794. doi: 10.1007/s00401-013-1125-6
  • Lin G, Mao D, Bellen HJ. Amyotrophic lateral sclerosis pathogenesis converges on defects in protein homeostasis associated with TDP-43 mislocalization and proteasome-mediated degradation overload. Curr Top Dev Biol. 2017;121:111–171.
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006 Oct 6;314(5796):130–133.
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011 Oct 20;72(2):245–256.
  • Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011 Oct 20;72(2):257–268.
  • Waite AJ, Baumer D, East S, et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging. 2014 Jul;35(7):e1779 5–e1779 13. doi: 10.1016/j.neurobiolaging.2014.01.016
  • Donnelly CJ, Zhang PW, Pham JT, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013 Oct 16;80(2):415–428.
  • Haeusler AR, Donnelly CJ, Periz G, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014 Mar 13;507(7491):195–200.
  • Lee YB, Chen HJ, Peres JN, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013 Dec 12;5(5):1178–1186.
  • Ash PE, Bieniek KF, Gendron TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013 Feb 20;77(4):639–646.
  • Mori K, Weng SM, Arzberger T, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013 Mar 15;339(6125):1335–1338.
  • Zu T, Liu Y, Banez-Coronel M, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):E4968–77.
  • Zhang K, Donnelly CJ, Haeusler AR, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature. 2015 Sep 3;525(7567):56–61.
  • Cunningham KM, Maulding K, Ruan K, et al. Tfeb/mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. Elife. 2020 Dec 10;9. doi:10.7554/eLife.59419
  • Cai Y, Arikkath J, Yang L, et al. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders. Autophagy. 2016;12(2):225–244. doi: 10.1080/15548627.2015.1121360
  • Hetz C, Thielen P, Matus S, et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009 Oct 1;23(19):2294–2306.
  • Guo W, Stoklund Dittlau K, Van Den Bosch L. Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Semin Cell Dev Biol. 2020 Mar;99:133–150. doi: 10.1016/j.semcdb.2019.07.010
  • Sleigh JN, Rossor AM, Fellows AD, et al. Axonal transport and neurological disease. Nat Rev Neurol. 2019 Dec;15(12):691–703. doi: 10.1038/s41582-019-0257-2
  • De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? Neurobiol Dis. 2017 Sep;105:283–299. doi: 10.1016/j.nbd.2017.02.004
  • Mizielinska S, Gronke S, Niccoli T, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014 Sep 5;345(6201):1192–1194.
  • Vijayan V, Verstreken P. Autophagy in the presynaptic compartment in health and disease. J Cell Bio. 2017 Jul 3;216(7):1895–1906.
  • He C, Song H, Yorimitsu T, et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Bio. 2006 Dec 18;175(6):925–935.
  • Yang S, Park D, Manning L, et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron. 2022 Mar 2;110(5):824–840 e10.
  • Sung H, Lloyd TE. Defective axonal transport of endo-lysosomes and dense core vesicles in a Drosophila model of C9-ALS/FTD. Traffic. 2022 Sep;23(9):430–441. doi: 10.1111/tra.12861
  • Pulver SR, Pashkovski SL, Hornstein NJ, et al. Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol. 2009 Jun;101(6):3075–3088. doi: 10.1152/jn.00071.2009
  • Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007 Aug 17;282(33):24131–24145.
  • Cheng XT, Zhou B, Lin MY, et al. Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. J Cell Bio. 2015 May 11;209(3):377–386.
  • Moustaqim-Barrette A, Lin YQ, Pradhan S, et al. The amyotrophic lateral sclerosis 8 protein, VAP, is required for ER protein quality control. Hum Mol Genet. 2014 Apr 15;23(8):1975–1989.
  • Yang YS, Harel NY, Strittmatter SM. Reticulon-4A (Nogo-A) redistributes protein disulfide isomerase to protect mice from SOD1-dependent amyotrophic lateral sclerosis. J Neurosci. 2009 Nov 4;29(44):13850–13859.
  • Summerville JB, Faust JF, Fan E, et al. The effects of ER morphology on synaptic structure and function in Drosophila melanogaster. J Cell Sci. 2016 Apr 15;129(8):1635–1648.
  • Yalcin B, Zhao L, Stofanko M, et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. Elife. 2017 Jul 25;6. doi:10.7554/eLife.23882
  • Espadas J, Pendin D, Bocanegra R, et al. Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon. Nat Commun. 2019 Nov 22;10(1):5327.
  • Georgiades P, Allan VJ, Wright GD, et al. The flexibility and dynamics of the tubules in the endoplasmic reticulum. Sci Rep. 2017 Nov 28;7(1):16474.
  • Perkins HT, Allan V. Intertwined and finely balanced: endoplasmic reticulum morphology, dynamics, function, and diseases. Cells. 2021 Sep 7;10(9):2341.
  • Kuijpers M, Kochlamazashvili G, Stumpf A, et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal endoplasmic reticulum. Neuron. 2021 Jan 20;109(2):299–313 e9.
  • Ren C, Finkel SE, Tower J. Conditional inhibition of autophagy genes in adult Drosophila impairs immunity without compromising longevity. Exp Gerontol. 2009 Mar;44(3):228–235. doi: 10.1016/j.exger.2008.10.002
  • Behrendt L, Hoischen C, Kaether C. Disease-causing mutated ATLASTIN 3 is excluded from distal axons and reduces axonal autophagy. Neurobiol Dis. 2021 Jul;155:105400. doi: 10.1016/j.nbd.2021.105400
  • Liu N, Zhao H, Zhao YG, et al. Atlastin 2/3 regulate ER targeting of the ULK1 complex to initiate autophagy. J Cell Bio. 2021 Jul 5;220(7): doi: 10.1083/jcb.202012091
  • Wang R, Miao G, Shen JL, et al. ESCRT dysfunction compromises endoplasmic reticulum maturation and autophagosome biogenesis in Drosophila. Curr Biol. 2022 Mar 28;32(6):1262–1274 e4.
  • Montagna A, Vajente N, Pendin D, et al. In vivo analysis of CRISPR/Cas9 induced atlastin pathological mutations in Drosophila. Front Neurosci. 2020;14:547746. doi: 10.3389/fnins.2020.547746
  • Hill SE, Colon-Ramos DA. The journey of the synaptic autophagosome: a cell biological perspective. Neuron. 2020 Mar 18;105(6):961–973.
  • Sidibe DK, Vogel MC, Maday S. Organization of the autophagy pathway in neurons. Curr Opin Neurobiol. 2022 Aug;75:102554. doi: 10.1016/j.conb.2022.102554
  • Zheng Q, Chen Y, Chen D, et al. Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell. 2022 Oct 27;185(22):4082–4098 e22.
  • Janota CS, Pinto A, Pezzarossa A, et al. Shielding of actin by the endoplasmic reticulum impacts nuclear positioning. Nat Commun. 2022 May 19;13(1):2763.
  • Nixon-Abell J, Obara CJ, Weigel AV, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science. 2016 Oct 28;354(6311):aaf3928–aaf3928.
  • Grigoriev I, Gouveia SM, van der Vaart B, et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol. 2008 Feb 12;18(3):177–182.
  • Zheng P, Obara CJ, Szczesna E, et al. ER proteins decipher the tubulin code to regulate organelle distribution. Nature. 2022 Jan;601(7891):132–138. doi: 10.1038/s41586-021-04204-9
  • Stadler L, Speckner K, Weiss M. Diffusion of exit sites on the endoplasmic reticulum: a random walk on a shivering backbone. Biophys J. 2018 Oct 16;115(8):1552–1560.
  • Friedman JR, Webster BM, Mastronarde DN, et al. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Bio. 2010 Aug 9;190(3):363–375.
  • Guo Y, Li D, Zhang S, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell. 2018 Nov 15;175(5):1430–1442 e17.
  • Zamponi E, Meehl JB, Voeltz GK. The ER ladder is a unique morphological feature of developing mammalian axons. Dev Cell. 2022 Jun 6;57(11):1369–1382 e6.
  • Friedman JR, Lackner LL, West M, et al. ER tubules mark sites of mitochondrial division. Science. 2011 Oct 21;334(6054):358–362.
  • Rowland AA, Chitwood PJ, Phillips MJ, et al. ER contact sites define the position and timing of endosome fission. Cell. 2014 Nov 20;159(5):1027–1041.
  • Hazan J, Fonknechten N, Mavel D, et al. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet. 1999 Nov;23(3):296–303. doi: 10.1038/15472
  • Tudor EL, Galtrey CM, Perkinton MS, et al. Amyotrophic lateral sclerosis mutant vesicle-associated membrane protein-associated protein-B transgenic mice develop TAR-DNA-binding protein-43 pathology. Neuroscience. 2010 May 19;167(3):774–785.
  • Sullivan PM, Zhou X, Robins AM, et al. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun. 2016 May 18;4(1):51.
  • Yang M, Liang C, Swaminathan K, et al. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci Adv. 2016 Sep;2(9):e1601167. doi: 10.1126/sciadv.1601167
  • Korac J, Schaeffer V, Kovacevic I, et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci. 2013 Jan 15;126(Pt 2):580–592.
  • Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4439–48.
  • Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015 Aug 20;524(7565):309–314.
  • Moore AS, Holzbaur EL. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3349–58.
  • Gal J, Strom AL, Kwinter DM, et al. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem. 2009 Nov;111(4):1062–1073. doi: 10.1111/j.1471-4159.2009.06388.x
  • Rudnick ND, Griffey CJ, Guarnieri P, et al. Distinct roles for motor neuron autophagy early and late in the SOD1(G93A) mouse model of ALS. Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8294–E8303.
  • Laird FM, Farah MH, Ackerley S, et al. Motor neuron disease occurring in a mutant dynactin mouse model is characterized by defects in vesicular trafficking. J Neurosci. 2008 Feb 27;28(9):1997–2005.
  • Munch C, Sedlmeier R, Meyer T, et al. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology. 2004 Aug 24;63(4):724–726.
  • Shidara Y, Hollenbeck PJ. Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J Neurosci. 2010 Aug 25;30(34):11369–11378.
  • Devireddy S, Sung H, Liao PC, et al. Analysis of mitochondrial traffic in Drosophila. Methods Enzymol. 2014;547:131–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.