789
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Atl (atlastin) regulates mTor signaling and autophagy in Drosophila muscle through alteration of the lysosomal network

, , , , , ORCID Icon & ORCID Icon show all
Pages 131-150 | Received 06 Mar 2023, Accepted 11 Aug 2023, Published online: 30 Aug 2023

References

  • Hou X, Watzlawik JO, Fiesel FC, et al. Autophagy in Parkinson’s disease. J Mol Biol. 2020 Apr 3;432(8):2651–2672. doi: 10.1016/j.jmb.2020.01.037
  • Liu J, Li L. Targeting autophagy for the Treatment of Alzheimer’s disease: Challenges and Opportunities. Front Mol Neurosci. 2019;12:203. doi: 10.3389/fnmol.2019.00203
  • Martin DD, Ladha S, Ehrnhoefer DE, et al. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015 Jan;38(1):26–35. doi: 10.1016/j.tins.2014.09.003
  • Metzger S, Saukko M, Van Che H, et al. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet. 2010 Oct;128(4):453–459. doi: 10.1007/s00439-010-0873-9
  • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006 Oct 19;443(7113):780–786. doi: 10.1038/nature05291
  • Yang C, Wang X. Lysosome biogenesis: Regulation and functions. J Cell Bio. 2021 Jun 7;220(6). 10.1083/jcb.202102001
  • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006 Jun 15;441(7095):880–884. doi: 10.1038/nature04723
  • Komatsu M, Waguri S, Koike M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007 Dec 14;131(6):1149–1163. doi: 10.1016/j.cell.2007.10.035
  • Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscular Disorders. 2009 May;19(5):308–315. doi: 10.1016/j.nmd.2009.01.009
  • Vantaggiato C, Crimella C, Airoldi G, et al. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain. 2013 Oct;136(Pt 10):3119–3139. doi: 10.1093/brain/awt227
  • Khundadze M, Ribaudo F, Hussain A, et al. Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation. Autophagy. 2021 Nov;17(11):3690–3706. doi: 10.1080/15548627.2021.1891848
  • Clemen CS, Tangavelou K, Strucksberg KH, et al. Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain. 2010 Oct;133(10):2920–2941. doi: 10.1093/brain/awq222
  • Johnson AE, Shu H, Hauswirth AG, et al. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo. Elife. 2015 Jul 13;4. doi: 10.7554/eLife.07366.
  • Orso G, Pendin D, Liu S, et al. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature. 2009 Aug 20;460(7258):978–983. doi: 10.1038/nature08280
  • Liu N, Zhao H, Zhao YG, et al. Atlastin 2/3 regulate ER targeting of the ULK1 complex to initiate autophagy. J Cell Bio. 2021 Jul 5;220(7). doi: 10.1083/jcb.202012091
  • Xu S, Stern M, McNew JA. Beneficial effects of rapamycin in a Drosophila model for hereditary spastic paraplegia. J Cell Sci. 2017 Jan 15;130(2):453–465. doi: 10.1242/jcs.196741
  • Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007 Jun 14;447(7146):859–863. doi: 10.1038/nature05853
  • Snyder H, Mensah K, Theisler C, et al. Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem. 2003 Apr 4;278(14):11753–11759. doi: 10.1074/jbc.M208641200
  • Yao TP. The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer. 2010 Jul 1;1(7):779–786. doi: 10.1177/1947601910383277
  • Lamark T, Svenning S, Johansen T, et al. Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 2017 Dec 12;61(6):609–624. doi: 10.1042/EBC20170035
  • Sweeney ST, Davis GW. Unrestricted synaptic growth in spinster-a late endosomal protein implicated in TGF-beta-mediated synaptic growth regulation. Neuron. 2002 Oct 24;36(3):403–416. doi: 10.1016/S0896-6273(02)01014-0
  • Majzoub RN, Wonder E, Ewert KK, et al. Rab11 and Lysotracker Markers Reveal Correlation between endosomal Pathways and Transfection Efficiency of surface-Functionalized Cationic Liposome-DNA Nanoparticles. J Phys Chem B. 2016 Jul 7;120(26):6439–6453. doi: 10.1021/acs.jpcb.6b04441
  • Barz S, Kriegenburg F, Henning A, et al. Atg1 kinase regulates autophagosome-vacuole fusion by controlling SNARE bundling. EMBO Rep. 2020 Dec 3;21(12):e51869. doi: 10.15252/embr.202051869
  • Li M, Khambu B, Zhang H, et al. Suppression of lysosome function induces autophagy via a feedback down-regulation of MTOR complex 1 (MTORC1) activity. J Biol Chem. 2013 Dec 13;288(50):35769–35780. doi: 10.1074/jbc.M113.511212
  • Burnett PE, Barrow RK, Cohen NA, et al. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432–1437. doi: 10.1073/pnas.95.4.1432
  • Liu CC, Lin YC, Chen YH, et al. Cul3-KLHL20 Ubiquitin Ligase Governs the Turnover of ULK1 and VPS34 Complexes to control autophagy Termination. Mol Cell. 2016 Jan 7;61(1):84–97. doi: 10.1016/j.molcel.2015.11.001
  • Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009 Apr;20(7):1992–2003. doi: 10.1091/mbc.e08-12-1249
  • Kamada Y, Yoshino K, Kondo C, et al. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol. 2010 Feb;30(4):1049–1058. doi: 10.1128/MCB.01344-09
  • Penney J, Tsurudome K, Liao EH, et al. TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction. Neuron. 2012 Apr 12;74(1):166–178. doi: 10.1016/j.neuron.2012.01.030
  • Summerville JB, Faust JF, Fan E, et al. The effects of ER morphology on synaptic structure and function in Drosophila melanogaster. J Cell Sci. 2016 Apr 15;129(8):1635–1648. doi: 10.1242/jcs.184929
  • Lee M, Paik SK, Lee MJ, et al. Drosophila atlastin regulates the stability of muscle microtubules and is required for synapse development. Dev Biol. 2009 Jun 15;330(2):250–262. doi: 10.1016/j.ydbio.2009.03.019
  • Lee Y, Paik D, Bang S, et al. Loss of spastic paraplegia gene atlastin induces age-dependent death of dopaminergic neurons in Drosophila. Neurobiol Aging. 2008 Jan;29(1):84–94. doi: 10.1016/j.neurobiolaging.2006.09.004
  • Ktistakis NT. ER platforms mediating autophagosome generation. Biochim Biophys Acta, Mol Cell Biol Lipids. 2020 Jan;1865(1):158433. doi: 10.1016/j.bbalip.2019.03.005
  • Morel E. Endoplasmic reticulum membrane and contact Site Dynamics in autophagy Regulation and stress Response. Front Cell Dev Biol. 2020;8:343. doi: 10.3389/fcell.2020.00343
  • Nakano Y. Stories of spinster with various faces: from courtship rejection to tumor metastasis rejection. J Neurogenet. 2019 Mar-Jun;33(2):90–95. doi: 10.1080/01677063.2019.1586897
  • Nakano Y, Fujitani K, Kurihara J, et al. Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol Cell Biol. 2001 Jun;21(11):3775–3788. doi: 10.1128/MCB.21.11.3775-3788.2001
  • Wenzel EM, Elfmark LA, Stenmark H, et al. ER as master regulator of membrane trafficking and organelle function. J Cell Bio. 2022 Oct 3;221(10). doi: 10.1083/jcb.202205135
  • Friedman JR, Dibenedetto JR, West M, et al. Endoplasmic reticulum–endosome contact increases as endosomes traffic and mature. Mol Biol Cell. 2013 Apr;24(7):1030–1040. doi: 10.1091/mbc.e12-10-0733
  • Wu H, Voeltz GK. Reticulon-3 Promotes endosome maturation at ER membrane contact sites. Dev Cell. 2021 Jan 11;56(1):52–66 e7. doi: 10.1016/j.devcel.2020.12.014
  • Hoyer MJ, Chitwood PJ, Ebmeier CC, et al. A novel class of ER membrane proteins regulates ER-Associated endosome Fission. Cell. 2018 Sep 20;175(1):254–265 e14. doi: 10.1016/j.cell.2018.08.030
  • Rocha N, Kuijl C, van der Kant R, et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Bio. 2009 Jun 29;185(7):1209–1225. doi: 10.1083/jcb.200811005
  • Raiborg C, Wenzel EM, Pedersen NM, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015 Apr 9;520(7546):234–238. doi: 10.1038/nature14359
  • Jongsma ML, Berlin I, Wijdeven RH, et al. An ER-Associated pathway Defines endosomal Architecture for Controlled cargo transport. Cell. 2016 Jun 30;166(1):152–166. doi: 10.1016/j.cell.2016.05.078
  • Csordas G, Weaver D, Hajnoczky G. Endoplasmic reticulum-Mitochondrial Contactology: Structure and signaling functions. Trends Cell Biol. 2018 Jul;28(7):523–540. doi: 10.1016/j.tcb.2018.02.009
  • Gomez-Suaga P, Paillusson S, Stoica R, et al. The ER-Mitochondria Tethering complex VAPB-PTPIP51 regulates autophagy. Curr Biol. 2017 Feb 6;27(3):371–385. doi: 10.1016/j.cub.2016.12.038
  • Sassano ML, Felipe-Abrio B, Agostinis P. ER-mitochondria contact sites; a multifaceted factory for Ca(2+) signaling and lipid transport. Front Cell Dev Biol. 2022;10:988014. doi: 10.3389/fcell.2022.988014
  • Markovinovic A, Greig J, Martin-Guerrero SM, et al. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci. 2022 Feb 1;135(3). doi: 10.1242/jcs.248534
  • Chen C, Li J, Qin X, et al. Peroxisomal membrane contact sites in mammalian cells. Front Cell Dev Biol. 2020;8:512. doi: 10.3389/fcell.2020.00512
  • Hua R, Cheng D, Coyaud E, et al. Vaps and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Bio. 2017 Feb;216(2):367–377. doi: 10.1083/jcb.201608128
  • Venditti R, Masone MC, De Matteis MA. ER-Golgi membrane contact sites. Biochem Soc Trans. 2020 Feb 28;48(1):187–197. doi: 10.1042/BST20190537
  • Mesmin B, Kovacs D, D’Angelo G. Lipid exchange and signaling at ER-Golgi contact sites. Curr Opin Cell Biol. 2019 Apr;57:8–15. doi: 10.1016/j.ceb.2018.10.002
  • Lu M, van Tartwijk FW, Lin JQ, et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci Adv. 2020 Dec;6(51). doi: 10.1126/sciadv.abc7209
  • Cai S, Wu Y, Guillen-Samander A, et al. In situ architecture of the lipid transport protein VPS13C at ER-lysosome membrane contacts. Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2203769119. doi: 10.1073/pnas.2203769119
  • Gu Y, Princely Abudu Y, Kumar S, et al. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. EMBO J. 2019 Nov 15;38(22):e101994. doi: 10.15252/embj.2019101994
  • Yu L, McPhee CK, Zheng L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010 Jun 17;465(7300):942–946. doi: 10.1038/nature09076
  • Chen Y, Yu L. Recent progress in autophagic lysosome reformation. Traffic. 2017 Jun;18(6):358–361. doi: 10.1111/tra.12484
  • Chen Y, Yu L. Development of Research into autophagic lysosome reformation. Mol Cells. 2018 Jan 31;41(1):45–49. doi: 10.14348/molcells.2018.2265
  • Li S, Ghosh C, Xing Y, et al. Phosphatidylinositol 4,5-bisphosphate in the control of membrane trafficking. Int J Biol Sci. 2020;16(15):2761–2774. doi: 10.7150/ijbs.49665
  • Ktistakis NT, Tooze SA. Piping on lysosome tubes. EMBO J. 2013 Feb 6;32(3):315–317. doi: 10.1038/emboj.2012.355
  • Rong Y, Liu M, Ma L, et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat Cell Biol. 2012 Sep;14(9):924–934. doi: 10.1038/ncb2557
  • Ramos AR, Elong Edimo W, Erneux C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul. 2018 Jan;67(67):40–48. doi: 10.1016/j.jbior.2017.09.001
  • Osborn DPS, Pond HL, Mazaheri N, et al. Mutations in INPP5K cause a form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjogren Syndrome and Dystroglycanopathy. Am J Hum Genet. 2017 Mar 2;100(3):537–545. doi: 10.1016/j.ajhg.2017.01.019
  • Wiessner M, Roos A, Munn CJ, et al. Mutations in INPP5K, Encoding a Phosphoinositide 5-phosphatase, cause Congenital Muscular Dystrophy with Cataracts and Mild Cognitive Impairment. Am J Hum Genet. 2017 Mar 2;100(3):523–536. doi: 10.1016/j.ajhg.2017.01.024
  • Dong R, Zhu T, Benedetti L, et al. The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J Cell Bio. 2018 Oct 1;217(10):3577–3592. doi: 10.1083/jcb.201802125
  • Yousaf S, Sheikh SA, Riazuddin S, et al. INPP5K variant causes autosomal recessive congenital cataract in a Pakistani family. Clin Genet. 2018 Mar;93(3):682–686. doi: 10.1111/cge.13143
  • Ijuin T, Hatano N, Hosooka T, et al. Regulation of insulin signaling in skeletal muscle by PIP3 phosphatase, SKIP, and endoplasmic reticulum molecular chaperone glucose-regulated protein 78. Biochim Biophys Acta. 2015 Dec;1853(12):3192–3201. doi: 10.1016/j.bbamcr.2015.09.009
  • Ijuin T, Hosooka T, Takenawa T. Phosphatidylinositol 3,4,5-Trisphosphate phosphatase SKIP Links endoplasmic reticulum stress in skeletal muscle to insulin Resistance. Mol Cell Biol. 2016 Jan 1;36(1):108–118. doi: 10.1128/MCB.00921-15
  • Ijuin T, Takenawa T. Regulation of insulin signaling by the phosphatidylinositol 3,4,5-triphosphate phosphatase SKIP through the scaffolding function of Pak1. Mol Cell Biol. 2012 Sep;32(17):3570–3584. doi: 10.1128/MCB.00636-12
  • Ijuin T, Takenawa T. Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation. J Biol Chem. 2012 Sep 7;287(37):31330–31341. doi: 10.1074/jbc.M112.388785
  • Gurung R, Tan A, Ooms LM, et al. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J Biol Chem. 2003 Mar 28;278(13):11376–11385. doi: 10.1074/jbc.M209991200
  • Ijuin T, Mochizuki Y, Fukami K, et al. Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem. 2000 Apr 14;275(15):10870–10875. doi: 10.1074/jbc.275.15.10870
  • McGrath MJ, Eramo MJ, Gurung R, et al. Defective lysosome reformation during autophagy causes skeletal muscle disease. J Clin Invest. 2021 Jan 4;131(1). doi: 10.1172/JCI135124
  • Rowland AA, Chitwood PJ, Phillips MJ, et al. ER contact sites define the position and timing of endosome fission. Cell. 2014 Nov 20;159(5):1027–1041. doi: 10.1016/j.cell.2014.10.023
  • Raiborg C, Wenzel EM, Stenmark H. ER-endosome contact sites: molecular compositions and functions. EMBO J. 2015 Jul 14;34(14):1848–1858. doi: 10.15252/embj.201591481
  • Wu H, Carvalho P, Voeltz GK. Here, there, and everywhere: The importance of ER membrane contact sites. Science. 2018 Aug 3;361(6401). 10.1126/science.aan5835
  • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012 Dec 7;151(6):1256–1269. doi: 10.1016/j.cell.2012.11.001
  • Tian X, Teng J, Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy. 2021 Oct;17(10):2680–2688. doi: 10.1080/15548627.2020.1823124
  • McNew JA, Sogaard M, Lampen NM, et al. Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport. J Biol Chem. 1997 Jul 11;272(28):17776–17783. doi: 10.1074/jbc.272.28.17776
  • Kriegenburg F, Bas L, Gao J, et al. The multi-functional SNARE protein Ykt6 in autophagosomal fusion processes. Cell Cycle. 2019 Mar-Apr;18(6–7):639–651. doi: 10.1080/15384101.2019.1580488
  • Mizushima N, Matsui T, Yamamoto H. YKT6 as a second SNARE protein of mammalian autophagosomes. Autophagy. 2019 Jan;15(1):176–177. doi: 10.1080/15548627.2018.1532262
  • Nair U, Jotwani A, Geng J, et al. SNARE proteins are required for macroautophagy. Cell. 2011 Jul 22;146(2):290–302. doi: 10.1016/j.cell.2011.06.022
  • Matsui T, Jiang P, Nakano S, et al. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Bio. 2018 Aug 6;217(8):2633–2645. doi: 10.1083/jcb.201712058
  • Kimura S, Noda T, Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct. 2008;33(1):109–122. doi: 10.1247/csf.08005
  • Ravikumar B, Acevedo-Arozena A, Imarisio S, et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet. 2005 Jul;37(7):771–776. doi: 10.1038/ng1591
  • Hasegawa J, Iwamoto R, Otomo T, et al. Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J. 2016 Sep 1;35(17):1853–1867. doi: 10.15252/embj.201593148
  • Wang H, Sun HQ, Zhu X, et al. Gabaraps regulate PI4P-dependent autophagosome: lysosome fusion. Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):7015–7020. doi: 10.1073/pnas.1507263112
  • Steegmaier M, Yang B, Yoo JS, et al. Three novel proteins of the syntaxin/SNAP-25 family. J Biol Chem. 1998 Dec 18;273(51):34171–34179. doi: 10.1074/jbc.273.51.34171
  • Gao J, Kurre R, Rose J, et al. Function of the SNARE Ykt6 on autophagosomes requires the Dsl1 complex and the Atg1 kinase complex. EMBO Rep. 2020 Dec 3;21(12):e50733. doi: 10.15252/embr.202050733
  • Osawa T, Matoba K, Noda NN. Lipid transport from endoplasmic reticulum to autophagic Membranes. Cold Spring Harb Perspect Biol. 2022 Nov 1;14(11):a041254. doi: 10.1101/cshperspect.a041254
  • Watts GD, Wymer J, Kovach MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004 Apr;36(4):377–381. doi: 10.1038/ng1332
  • Al-Obeidi E, Al-Tahan S, Surampalli A, et al. Genotype-phenotype study in patients with valosin-containing protein mutations associated with multisystem proteinopathy. Clin Genet. 2018 Jan;93(1):119–125. doi: 10.1111/cge.13095
  • Abramzon Y, Johnson JO, Scholz SW, et al. Valosin-containing protein (VCP) mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2012 Sep;33(9):e2231 1–e2231 6. doi: 10.1016/j.neurobiolaging.2012.04.005
  • de Bot ST, Schelhaas HJ, Kamsteeg EJ, et al. Hereditary spastic paraplegia caused by a mutation in the VCP gene. Brain. 2012 Dec;135(12):e223. author reply e224. doi: 10.1093/brain/aws201
  • Betz C, Hall MN. Where is mTOR and what is it doing there? J Cell Bio. 2013 Nov 25;203(4):563–574. doi: 10.1083/jcb.201306041
  • Carroll B, Dunlop EA. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J. 2017 Apr 13;474(9):1453–1466. doi: 10.1042/BCJ20160780
  • Lim CY, Zoncu R. The lysosome as a command-and-control center for cellular metabolism. J Cell Bio. 2016 Sep 12;214(6):653–664. doi: 10.1083/jcb.201607005
  • Wyant GA, Abu-Remaileh M, Wolfson RL, et al. mTORC1 Activator SLC38A9 is required to Efflux essential amino acids from lysosomes and use protein as a Nutrient. Cell. 2017 Oct 19;171(3):642–654 e12. doi: 10.1016/j.cell.2017.09.046
  • van der Graaf K, Srivastav S, Singh P, et al. The Drosophila melanogaster attP40 docking site and derivatives are insertion mutations of msp-300. PLoS One. 2022;17(12):e0278598. doi: 10.1371/journal.pone.0278598
  • Wu X, Hammer JA. ZEISS Airyscan: Optimizing Usage for Fast, Gentle, super-resolution imaging. Methods Mol Biol. 2021;2304:111–130.
  • Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol. 2011 Apr;300(4):C723–42. doi: 10.1152/ajpcell.00462.2010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.