4,529
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic regulation of autophagy-related genes: Implications for neurodevelopmental disorders

, & ORCID Icon
Pages 15-28 | Received 17 Apr 2023, Accepted 11 Aug 2023, Published online: 06 Sep 2023

References

  • Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–1075. doi: 10.1038/nature06639
  • Maday S, Holzbaur ELF. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell. 2014 Jul;30(1):71–85. doi: 10.1016/j.devcel.2014.06.001
  • Liang Y. Emerging Concepts and functions of autophagy as a regulator of synaptic components and plasticity. Cells. 2019 Jan;8(1). doi: 10.3390/cells8010034.
  • Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006 Jun;441(7095):885–889. doi: 10.1038/nature04724
  • Fujikake N, Shin M, Shimizu S. Association between autophagy and neurodegenerative diseases. Front Neurosci. 2018 May;12:255. doi: 10.3389/fnins.2018.00255
  • Djajadikerta A, Keshri S, Pavel M, et al. Autophagy induction as a Therapeutic Strategy for neurodegenerative diseases. J Mol Biol. 2020;432(8):2799–2821. doi: 10.1016/j.jmb.2019.12.035
  • Son JH, Shim JH, Kim KH, et al. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med. 2012 Feb;44(2):89–98. doi: 10.3858/emm.2012.44.2.031
  • Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006 Jun;441(7095):880–884. doi: 10.1038/nature04723
  • Komatsu M, Wang QJ, Holstein GR, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci, USA. 2007 Sep;104(36):14489–14494. doi: 10.1073/pnas.0701311104
  • Maria Fimia G, Stoykova A, Romagnoli A, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447(7148):1121–1125. doi: 10.1038/nature05925
  • Liang C. Negative regulation of autophagy. Cell Death Diff. 2010;17(12):1807–1815. doi: 10.1038/cdd.2010.115
  • Joo JH, Wang B, Frankel E, et al. The Noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Molecular Cell. 2016 May;62(4):491–506. doi: 10.1016/j.molcel.2016.04.020
  • Vijayan V, Verstreken P. Autophagy in the presynaptic compartment in health and disease. J Cell Bio. 2017 May;216(7):1895–1906. doi: 10.1083/jcb.201611113
  • Rubinsztein DC, DiFiglia M, Heintz N, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22. doi: 10.4161/auto.1.1.1513
  • Kiriyama Y, Nochi H. The function of autophagy in neurodegenerative diseases. Int J Mol Sci. 2015 Nov;16(11):26797–26812. doi: 10.3390/ijms161125990
  • Lynch-Day MA, Mao K, Wang K, et al. The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012 Apr;2(4):a009357. doi: 10.1101/cshperspect.a009357
  • Liu B, Oltvai ZN, Bayır H, et al. Quantitative assessment of cell fate decision between autophagy and apoptosis. Sci Rep. 2017;7(1):17605. doi: 10.1038/s41598-017-18001-w
  • Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy United States. 2012 Jan;8(1):1–3. doi: 10.4161/auto.8.1.16618
  • Mariño G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94. doi: 10.1038/nrm3735
  • Berry DL, Baehrecke EH. Growth Arrest and autophagy are required for Salivary Gland Cell degradation in Drosophila. Cell. 2007 Dec;131(6):1137–1148. doi: 10.1016/j.cell.2007.10.048
  • Füllgrabe J, Ghislat G, Cho D-H, et al. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci. 2016 Aug;129(16):3059–3066. doi: 10.1242/jcs.188920.
  • Lapierre LR, Kumsta C, Sandri M, et al. Transcriptional and epigenetic regulation of autophagy in aging. Autophagy. 2015 Jun;11(6):867–880. doi: 10.1080/15548627.2015.1034410.
  • Füllgrabe J, Lynch-Day MA, Heldring N, et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature. 2013;500(7463):468–471. doi: 10.1038/nature12313
  • Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, et al. Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol. 2013;33(20):3983–3993. doi: 10.1128/mcb.00813-13
  • Baek SH, Il Kim K. Epigenetic control of autophagy: Nuclear Events Gain More Attention. Molecular Cell. 2017;65(5):781–785. doi: 10.1016/j.molcel.2016.12.027
  • Shi Y, Shen HM, Gopalakrishnan V, et al. Epigenetic regulation of autophagy Beyond the Cytoplasm: A review. Front Cell Dev Biol. 2021;9(June):1–12. doi:10.3389/fcell.2021.675599
  • Füllgrabe J, Klionsky DJ, Joseph B. Histone post-translational modifications regulate autophagy flux and outcome. Autophagy. 2013 Oct;9(10):1621–1623. doi: 10.4161/auto.25803
  • Zapata-Muñoz J, Villarejo-Zori B, Largo-Barrientos P, et al. Towards a better understanding of the neuro-developmental role of autophagy in sickness and in health. Cell Stress. 2021 Jul;5(7):99–118. doi: 10.15698/cst2021.07.253.
  • Deng Z, Zhou X, Lu J-H, et al. Autophagy deficiency in neurodevelopmental disorders. Cell Biosci. 2021;11(1):214. doi:10.1186/s13578-021-00726-x
  • Deneubourg C, Ramm M, Smith LJ, et al. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy. 2021;(00):1–22. doi: 10.1080/15548627.2021.1943177
  • Nagahama K, Sakoori K, Watanabe T, et al. Setd1a Insufficiency in mice Attenuates Excitatory synaptic function and Recapitulates schizophrenia-related behavioral abnormalities. Cell Rep. 2020 Sep;32(11):108126. doi: 10.1016/j.celrep.2020.108126
  • Irwin SA, Patel B, Idupulapati M, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001 Jan;98(2):161–167. doi: 10.1002/1096-8628(20010115)98:2<161:AID-AJMG1025>3.0.CO;2-B
  • Sánchez-Lafuente CL, Kalynchuk LE, Caruncho HJ, et al. The role of MeCP2 in regulating synaptic plasticity in the context of stress and depression. Cells. 2022 Feb;11(4). doi: 10.3390/cells11040748.
  • Loureiro CM, Fachim HA, Harte MK, et al. Subchronic PCP effects on DNA methylation and protein expression of NMDA receptor subunit genes in the prefrontal cortex and hippocampus of female rats. J Psychopharmacol. 2022 Feb;36(2):238–244. doi: 10.1177/02698811211069109
  • Ciptasari U, van Bokhoven H. The phenomenal epigenome in neurodevelopmental disorders. Hum Mol Genet. 2020 Sep;29(R1):R42–R50. doi: 10.1093/hmg/ddaa175
  • Mossink B, Negwer M, Schubert D, et al. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci. 2021 Mar;78(6):2517–2563. doi: 10.1007/s00018-020-03714-5
  • Gibson WT, Hood R, Zhan S, et al. Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet. 2012 Jan;90(1):110–118. doi: 10.1016/j.ajhg.2011.11.018
  • Tatton-Brown K, Rahman N. EZH2-related overgrowth. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews®. Seattle (WA): University of Washington; 1993–2023. https://www.ncbi.nlm.nih.gov/books/NBK148820/
  • Al-Salem A, Alshammari MJ, Hassan H, et al. Weaver syndrome and defective cortical development: a rare association. Am J Med Genet A. 2013 Jan;161(1):225–227. doi: 10.1002/ajmg.a.35660
  • Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development. 2009;136(21):3531–3542. doi: 10.1242/dev.033902
  • Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group Silencing. Science. 2002 Nov;298(5595):1039–1043. doi: 10.1126/science.1076997
  • Wei FZ, Cao Z, Wang X, et al. Epigenetic regulation of autophagy by the methyltransferase EZH2 through an MTOR-dependent pathway. Autophagy. 2015;11(12):2309–2322. doi: 10.1080/15548627.2015.1117734
  • Huang J, Manning BD. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–190. doi:10.1042/BJ20080281
  • Barski A, Cuddapah S, Cui K, et al. High-Resolution Profiling of histone Methylations in the human Genome. Cell. 2007;129(4):823–837. doi: 10.1016/j.cell.2007.05.009
  • Artal-Martinez de Narvajas A, Gomez TS, Zhang JS, et al. Epigenetic regulation of autophagy by the methyltransferase G9a. Mol Cell Biol. 2013 Oct;33(20):3983–3993. doi: 10.1128/MCB.00813-13.
  • Nakayama J, Rice JC, Strahl BD, et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science. 2001 Apr;292(5514):110–113. doi: 10.1126/science.1060118
  • Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 2005 Apr;19(7):815–826. doi: 10.1101/gad.1284005
  • Kleefstra T, van Zelst-Stams WA, Nillesen WM, et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 2009 Sep;46(9):598–606. doi: 10.1136/jmg.2008.062950
  • Kleefstra T, Brunner HG, Amiel J, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006 Aug;79(2):370–377. doi: 10.1086/505693
  • Iglesias-Ortega L, Megías-Fernández C, Domínguez-Giménez P, et al. Cell consequences of loss of function of the epigenetic factor EHMT1. Cell Signal. 2023;110734. doi: 10.1016/j.cellsig.2023.110734
  • Luscan A, Laurendeau I, Malan V, et al. Mutations in SETD2 cause a novel overgrowth condition. J Med Genet. 2014 Aug;51(8):512–517. doi: 10.1136/jmedgenet-2014-102402
  • Edmunds JW, Mahadevan LC, Clayton AL. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J. 2008 Jan;27(2):406–420. doi: 10.1038/sj.emboj.7601967
  • Kim S, Kim H, Fong N, et al. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci USA. 2011 Aug;108(33):13564–13569. doi: 10.1073/pnas.1109475108
  • González-Rodríguez P, Zhang A-N, Murgoci H, et al. SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12. Cell Death Dis. 2020;11(1):69. doi:10.1038/s41419-020-2266-x
  • Walczak M, Martens S. Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy. 2013 Mar;9(3):424–425. doi: 10.4161/auto.22931
  • Seervai RNH, Grimm SL, Jangid RK, et al. An actin-WHAMM interaction linking SETD2 and autophagy. Biochem Biophys Res Commun. 2021;558:202–208. doi:10.1016/j.bbrc.2020.09.025
  • Sobering AK, Bryant LM, Li D, et al. Variants in PHF8 cause a spectrum of X-linked neurodevelopmental disorders and facial dysmorphology. HGG Advances. 2022 Jul;3(3):100102. doi: 10.1016/j.xhgg.2022.100102
  • Liu W, Tanasa B, Tyurina OV, et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010 Jul;466(7305):508–512. doi: 10.1038/nature09272
  • Feng W, Yonezawa M, Ye J, et al. PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol. 2010 Apr;17(4):445–450. doi: 10.1038/nsmb.1778.
  • Zhou W, Gong L, Wu Q, et al. PHF8 upregulation contributes to autophagic degradation of E-cadherin, epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2018 Sep;37(1):215. doi: 10.1186/s13046-018-0890-4
  • Hara T, Takamura A, Kishi C, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Bio. 2008 May;181(3):497–510. doi: 10.1083/jcb.200712064
  • Stolerman ES, Francisco E, Stallworth JL, et al. Genetic variants in the KDM6B gene are associated with neurodevelopmental delays and dysmorphic features. Am J Med Genet A. 2019 Jul;179(7):1276–1286. doi: 10.1002/ajmg.a.61173
  • Bögershausen N, Gatinois V, Riehmer V, et al. Mutation Update for Kabuki syndrome genes KMT2D and KDM6A and Further Delineation of X-Linked Kabuki syndrome Subtype 2. Human Mutation. 2016 Sep;37(9):847–864. doi: 10.1002/humu.23026
  • Van Laarhoven PM, Neitzel LR, Quintana AM, et al. Kabuki syndrome genes KMT2D and KDM6A: functional analyses demonstrate critical roles in craniofacial, heart and brain development. Hum Mol Genet. 2015 Aug;24(15):4443–4453. doi: 10.1093/hmg/ddv180
  • Kim E, Song J-J. Diverse ways to be specific: a novel Zn-binding domain confers substrate specificity to UTX/KDM6A histone H3 Lys 27 demethylase. Genes Dev. 2011 Nov;25(21):2223–2226. doi: 10.1101/gad.179473.111
  • Agger K, Cloos PAC, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007 Oct;449(7163):731–734. doi: 10.1038/nature06145
  • Byun S, Seok S, Kim Y-C, et al. Fasting-induced FGF21 signaling activates hepatic autophagy and lipid degradation via JMJD3 histone demethylase. Nat Commun. 2020;11(1):807. doi: 10.1038/s41467-020-14384-z
  • Denton D, Aung-Htut MT, Lorensuhewa N, et al. UTX coordinates steroid hormone-mediated autophagy and cell death. Nat Commun. 2013;4:2916. DOI:10.1038/ncomms3916
  • Diets IJ, van der Donk R, Baltrunaite K, et al. De Novo and Inherited pathogenic variants in KDM3B cause intellectual disability, short stature, and facial Dysmorphism. Am J Hum Genet. 2019 Apr;104(4):758–766. doi: 10.1016/j.ajhg.2019.02.023
  • Kim J-Y, Kim K-B, Eom GH, et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol Cell Biol. 2012;32(14):2917–2933. doi: 10.1128/mcb.00133-12
  • Jung H, Seo SB, Liu T. Histone lysine demethylase 3B (KDM3B) regulates the propagation of autophagy via transcriptional activation of autophagy-related genes. PLoS One. 2020;15(7):1–14. doi:10.1371/journal.pone.0236403
  • Kummeling J, Stremmelaar DE, Raun N, et al. Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome. Mol Psychiatry. 2021 Jun;26(6):2013–2024. doi: 10.1038/s41380-020-0725-5
  • Ambrosio S, Saccà CD, Amente S, et al. Lysine-specific demethylase LSD1 regulates autophagy in neuroblastoma through SESN2-dependent pathway. Oncogene. 2017;36(48):6701–6711. doi:10.1038/onc.2017.267
  • Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet (London, England). 2012 Nov;380(9854):1674–1682. doi: 10.1016/S0140-6736(12)61480-9
  • Tunovic S, Barkovich J, Sherr EH, et al. De Novo ANKRD11 and KDM1A gene mutations in a male with features of KBG syndrome and Kabuki syndrome. Am J Med Genet. 2014 Jul;164A(7):1744–1749. doi: 10.1002/ajmg.a.36450
  • Zhuo X, Wu Y, Yang Y, et al. Knockdown of LSD1 meliorates Ox-LDL-stimulated NLRP3 activation and inflammation by promoting autophagy via SESN2-mesiated PI3K/Akt/mTOR signaling pathway. Life Sci. 2019;233:116696. doi:10.1016/j.lfs.2019.116696
  • Parmigiani A, Nourbakhsh A, Ding B, et al. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014 Nov;9(4):1281–1291. doi: 10.1016/j.celrep.2014.10.019
  • Chan AJS, Cytrynbaum C, Hoang N, et al. Expanding the neurodevelopmental phenotypes of individuals with de novo KMT2A variants. NPJ Genom Med. 2019;4:9. DOI:10.1038/s41525-019-0083-x
  • Koolen DA, Kramer JM, Neveling K, et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nature Genet. 2012 Apr;44(6):639–641. doi: 10.1038/ng.2262
  • Zollino M, Orteschi D, Murdolo M, et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nature Genet. 2012 Apr;44(6):636–638. doi: 10.1038/ng.2257
  • Li L, Ghorbani M, Weisz-Hubshman M, et al. Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability. J Clin Investig. 2020;130(3):1431–1445. doi: 10.1172/JCI131145
  • Koolen DA, Pfundt R, Linda K, et al. The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. Eur J Hum Genet. 2016 May;24(5):652–659. doi: 10.1038/ejhg.2015.178
  • Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep. 2019 Jul;20(7):e47630. doi: 10.15252/embr.201847630
  • Taipale M, Rea S, Richter K, et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol. 2005;25(15):6798–6810. doi: 10.1128/mcb.25.15.6798-6810.2005
  • Linda K, Lewerissa EI Verboven AH, et al. Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders. Autophagy. 2021;18(2):1–20. doi: 10.1080/15548627.2021.1936777
  • Reyes AA, Marcum RD, He Y. Structure and function of chromatin remodelers. J Mol Biol. 2021;433(14):166929. doi: 10.1016/j.jmb.2021.166929
  • Delmas V, Stokes DG, Perry RP. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. Proc Natl Acad Sci USA. 1993 Mar;90(6):2414–2418. doi: 10.1073/pnas.90.6.2414
  • Woodage T, Basrai MA, Baxevanis AD, et al. Characterization of the CHD family of proteins. Proc Natl Acad Sci USA. 1997;94(21):11472–11477. doi: 10.1073/pnas.94.21.11472
  • Stokes DG, Perry RP. DNA-binding and chromatin localization properties of CHD1. Mol Cell Biol. 1995 May;15(5):2745–2753. doi: 10.1128/MCB.15.5.2745
  • Mansfield RE, Musselman CA, Kwan AH, et al. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem. 2011 Apr;286(13):11779–11791. doi: 10.1074/jbc.M110.208207
  • Tencer AH, Cox KL, Di L, et al. Covalent modifications of histone H3K9 Promote binding of CHD3. Cell Rep. 2017 Oct;21(2):455–466. doi: 10.1016/j.celrep.2017.09.054
  • Peña PV, Davrazou F, Shi X, et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 2006;442(7098):100–103. doi: 10.1038/nature04814
  • Shi X, Hong T, Walter KL, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 2006;442(7098):96–99. doi: 10.1038/nature04835
  • Schuster EF, Stöger R. CHD5 defines a new subfamily of chromodomain-SWI2/SNF2-like helicases. Mamm Genome. 2002 Feb;13(2):117–119. doi: 10.1007/s00335-001-3042-6
  • Boyer LA, Latek RR, Peterson CL. The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol. 2004;5(2):158–163. doi: 10.1038/nrm1314
  • Zahir FR, Tucker T, Mayo S, et al. Intragenic CNVs for epigenetic regulatory genes in intellectual disability: Survey identifies pathogenic and benign single exon changes. Am J Med Genet A. 2016 Nov;170(11):2916–2926. doi: 10.1002/ajmg.a.37669
  • Yamada K, Fukushi D, Ono T, et al. Characterization of a de novo balanced t(4;20)(q33;q12) translocation in a patient with mental retardation. Am J Med Genet. 2010 Dec;152A(12):3057–3067. doi: https://doi.org/10.1002/ajmg.a.33174
  • Kalscheuer VM, Feenstra I, Van Ravenswaaij-Arts CMA, et al. Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt-Hopkins syndrome. Am J Med Genet. 2008 Aug;146A(16):2053–2059. doi: 10.1002/ajmg.a.32419
  • Kargapolova Y, Rehimi R, Kayserili H, et al. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat Commun. 2021;12(1):1–15. doi: 10.1038/s41467-021-23327-1
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011 Jun;332(6036):1429–1433. doi: 10.1126/science.1204592
  • Helsmoortel C, Vulto-van Silfhout AT, Coe BP, et al. A SWI/SNF-related autism syndrome caused by de novo mutations in ADNP. Nature Genet. 2014;46(4):380–384. doi: 10.1038/ng.2899
  • Van Dijck A, Vulto-van Silfhout AT, Cappuyns E, et al. Clinical Presentation of a complex neurodevelopmental disorder caused by mutations in ADNP. Biol Psychiatry. 2019 Feb;85(4):287–297. doi: 10.1016/j.biopsych.2018.02.1173
  • Zamostiano R, Pinhasov A, Gelber E, et al. Cloning and characterization of the human activity-dependent neuroprotective protein. J Biol Chem. 2001 Jan;276(1):708–714. doi: 10.1074/jbc.M007416200
  • Mandel S, Rechavi G, Gozes I. Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis. Dev Biology. 2007 Mar;303(2):814–824. doi: 10.1016/j.ydbio.2006.11.039
  • Merenlender-Wagner A, Malishkevich A, Shemer Z, et al. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry. 2015;20(1):126–132. doi: 10.1038/mp.2013.174
  • Gabriele M, Vulto-van Silfhout AT, Germain P-L, et al. YY1 haploinsufficiency causes an intellectual disability syndrome Featuring transcriptional and chromatin dysfunction. Am J Hum Genet. 2017 Jun;100(6):907–925. doi: 10.1016/j.ajhg.2017.05.006
  • Shi Y, Seto E, Chang LS, et al. Transcriptional repression by YY1, a human GLI-Krüppel-related protein, and relief of repression by adenovirus E1A protein. Cell. 1991 Oct;67(2):377–388. doi: 10.1016/0092-8674(91)90189-6
  • Flanagan JR, Becker KG, Ennist DL, et al. Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus. Mol Cell Biol. 1992 Jan;12(1):38–44. doi: 10.1128/mcb.12.1.38-44.1992
  • Hariharan N, Kelley DE, Perry RP. Delta, a transcription factor that binds to downstream elements in several polymerase II promoters, is a functionally versatile zinc finger protein. Proc Natl Acad Sci USA. 1991 Nov;88(21):9799–9803. doi: 10.1073/pnas.88.21.9799
  • Du J, Ren W, Yao F, et al. YY1 cooperates with TFEB to regulate autophagy and lysosomal biogenesis in melanoma. Mol Carcinog. 2019 Nov;58(11):2149–2160. doi. doi: https://doi.org/10.1002/mc.23105
  • Wang C, Liang Y-J, Lin Y-S, et al. YY1AP, a novel co-activator of YY1. J Biol Chem. 2004 May;279:17750–17755. doi: 10.1074/jbc.M310532200
  • Guo D-C, Duan X-Y, Regalado ES, et al. Loss-of-function mutations in YY1AP1 lead to Grange syndrome and a Fibromuscular Dysplasia-like vascular disease. Am J Hum Genet. 2017 Jan;100(1):21–30. doi: 10.1016/j.ajhg.2016.11.008
  • Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6(8):597–610. doi: 10.1038/nrg1655
  • Bird A, Taggart M, Frommer M, et al. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985 Jan;40(1):91–99. doi: 10.1016/0092-8674(85)90312-5
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: Patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304. doi: 10.1038/nrg2540
  • Tatton-Brown K, Seal S, Ruark E, et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nature Genet. 2014;46(4):385–388. doi: 10.1038/ng.2917
  • Tatton-Brown K, Zachariou A, Loveday C, et al. The Tatton-Brown-Rahman syndrome: A clinical study of 55 individuals with de novo constitutive DNMT3A variants. Wellcome Open Res. 2018;3:46. DOI:10.12688/wellcomeopenres.14430.1
  • González-Rodríguez P, Cheray M, Füllgrabe J, et al. The DNA methyltransferase DNMT3A contributes to autophagy long-term memory. Autophagy. 2021;17(5):1259–1277. doi: 10.1080/15548627.2020.1816664
  • Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet. 1999;23(2):185–188. doi: 10.1038/13810
  • Banerjee A, Miller MT, Li K, et al. Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder. Brain. 2019 Feb;142(2):239–248. doi: 10.1093/brain/awy323.
  • Lee W, Kim J, Yun J-M, et al. MeCP2 regulates gene expression through recognition of H3K27me3. Nat Commun. 2020;11(1):3140. doi: 10.1038/s41467-020-16907-0
  • Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992 Oct;20(19):5085–5092. doi: 10.1093/nar/20.19.5085
  • Zha S, Li Z, Chen S, et al. MeCP2 inhibits cell functionality through FoxO3a and autophagy in endothelial progenitor cells. Aging. 2019 Sep;11(17):6714–6733. doi: 10.18632/aging.102183.
  • Audesse AJ, Dhakal S, Hassell L-A, et al. FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet. 2019 Apr;15(4):e1008097. doi: 10.1371/journal.pgen.1008097
  • Meng L, Feng B, Luan L, et al. MeCP2 inhibits ischemic neuronal injury by enhancing methylation of the FOXO3a promoter to repress the SPRY2-ZEB1 axis. Exp Mol Med. 2022;54(8):1076–1085. doi: 10.1038/s12276-022-00790-4
  • Park IY, Powell RT, Tripathi DN, et al. Dual chromatin and Cytoskeletal remodeling by SETD2. Cell. 2016;166(4):950–962. doi: 10.1016/j.cell.2016.07.005
  • López M, García-Oguiza A, Armstrong J, et al. Rubinstein-Taybi 2 associated to novel EP300 mutations: deepening the clinical and genetic spectrum. BMC Med Gene. 2018 Mar;19(1):36. doi: 10.1186/s12881-018-0548-2
  • Zimmermann N, Acosta AMBF, Kohlhase J, et al. Confirmation of EP300 gene mutations as a rare cause of Rubinstein–Taybi syndrome. Eur J Hum Genet. 2007 Aug;15(8):837–842. doi: 10.1038/sj.ejhg.5201791
  • Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltransferase. J Biol Chem. 2009;284(10):6322–6328. doi: 10.1074/jbc.M807135200
  • In HL, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105(9):3374–3379. doi: 10.1073/pnas.0712145105
  • Pietrocola F, Lachkar S, Enot DP, et al. Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Diff. 2015;22(3):509–516. doi: 10.1038/cdd.2014.215
  • Morselli E, Mariño G, Bennetzen MV, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Bio. 2011 Feb;192(4):615–629. doi: 10.1083/jcb.201008167
  • Kim C, Park K, Lee S. G9a/GLP methyltransferases inhibit autophagy by methylation- mediated ATG12 protein degradation. bioRxiv. 2021.
  • Shi Y-X, He Y-J, Zhou Y, et al. LSD1 negatively regulates autophagy in myoblast cells by driving PTEN degradation. Biochem Biophys Res Commun. 2020 Feb;522(4):924–930. doi: 10.1016/j.bbrc.2019.11.182
  • Wang Z, Miao G, Xue X, et al. The Vici syndrome protein EPG5 is a Rab7 Effector that Determines the fusion Specificity of autophagosomes with late Endosomes/lysosomes. Molecular Cell. 2016 Sep;63(5):781–795. doi: 10.1016/j.molcel.2016.08.021
  • Bryant D, Liu Y, Datta S, et al. SNX14 mutations affect endoplasmic reticulum-associated neutral lipid metabolism in autosomal recessive spinocerebellar ataxia 20. Hum Mol Genet. 2018 Jun;27(11):1927–1940. doi: 10.1093/hmg/ddy101
  • Saitsu H, Nishimura T, Muramatsu K, et al. De Novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nature Genet. 2013 Apr;45(4):445–449. doi: 10.1038/ng.2562
  • Zhao YG, Sun L, Miao G, et al. The autophagy gene Wdr45/Wipi4 regulates learning and memory function and axonal homeostasis. Autophagy. 2015 Jun;11(6):881–890. doi: 10.1080/15548627.2015.1047127
  • Akizu N, Cantagrel V, Zaki MS, et al. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nature Genet. 2015 May;47(5):528–534. doi: 10.1038/ng.3256
  • Chang J, Lee S, Blackstone C. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Investig. 2014 Dec;124(12):5249–5262. doi: 10.1172/JCI77598
  • Varga R-E, Khundadze M, Damme M, et al. In vivo evidence for lysosome Depletion and impaired autophagic Clearance in hereditary spastic paraplegia type SPG11. PLoS Genet. 2015 Aug;11(8):e1005454. doi: 10.1371/journal.pgen.1005454
  • Vantaggiato C, Clementi E, Bassi MT. Zfyve26/Spastizin. Autophagy. 2014;10:374–375. doi: 10.4161/auto.27173
  • Oz-Levi D, Ben-Zeev B, Ruzzo E, et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet. 2012 Dec;91(6):1065–1072. doi: 10.1016/j.ajhg.2012.09.015
  • Byrne S, Dionisi-Vici C, Smith L, et al. Vici syndrome: a review. Orphanet J Rare Diseases. 2016;11(1):21. doi: 10.1186/s13023-016-0399-x
  • Byrne S, Jansen L, U-King-Im J-M, et al. EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain. 2016 Mar;139(3):765–781. doi: 10.1093/brain/awv393
  • Gregory A, Hayflick S. Neurodegeneration with Brain Iron Accumulation Disorders Overview. GeneReviews®. Seattle (WA): University of Washington; 1993–2023. https://www.ncbi.nlm.nih.gov/books/NBK121988/
  • Lu Q, Yang P, Huang X, et al. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell. 2011 Aug;21(2):343–357. doi: 10.1016/j.devcel.2011.06.024
  • Fink JK. Hereditary spastic paraplegia: clinical principles and genetic advances. Semin Neurol. 2014 Jul;34(3):293–305. doi: 10.1055/s-0034-1386767
  • Lee K-M, Hwang S-K, Lee J-A. Neuronal autophagy and neurodevelopmental disorders. Exp Neurobiol. 2013 Sep;22(3):133–142. doi: 10.5607/en.2013.22.3.133
  • Fassio A, Falace A, Esposito A, et al. Emerging role of the autophagy/lysosomal Degradative pathway in neurodevelopmental disorders with epilepsy. Front Cell Neurosci. 2020;14:39. doi: 10.3389/fncel.2020.00039
  • Asensio-Juan E, Gallego C, Martínez-Balbás MA. The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res. 2012 Oct;40(19):9429–9440. doi: 10.1093/nar/gks716
  • Buontempo S, Laise P, Hughes JM, et al. EZH2-mediated H3K27me3 Targets transcriptional Circuits of neuronal differentiation. Front Neurosci. 2022;16(May):1–15. doi: 10.3389/fnins.2022.814144
  • Wang S, Rhijn J-RV, Akkouh I, et al. Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through the cAMP/PKA pathway. Cell Rep. 2022;39(5):110790. doi: 10.1016/j.celrep.2022.110790
  • Frega M, Linda K, Keller JM, et al. Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling. Nat Commun. 2019;10(1):1–15. doi: 10.1038/s41467-019-12947-3
  • Benevento M, Iacono G, Selten M, et al. Histone methylation by the Kleefstra syndrome protein EHMT1 mediates Homeostatic synaptic Scaling. Neuron. 2016;91(2):341–355. doi: 10.1016/j.neuron.2016.06.003
  • Jakovcevski M, Ruan H, Shen EY, et al. Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J Neurosci. 2015 Apr;35(13):5097–5108. doi: 10.1523/JNEUROSCI.3004-14.2015
  • Casares-Crespo L, Calatayud-Baselga I, García-Corzo L, et al. On the role of basal autophagy in adult neural stem cells and neurogenesis. Front Cell Neurosci. 2018;12:339. doi:10.3389/fncel.2018.00339
  • Wu X, Fleming A, Ricketts T, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7(1):10533. doi: 10.1038/ncomms10533
  • Bademosi AT, Decet M, Kuenen S, et al. EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation. Neuron. 2023;111:1402–1422.e13. doi: 10.1016/j.neuron.2023.02.001
  • Glatigny M, Moriceau S, Rivagorda M, et al. Autophagy is required for memory formation and Reverses Age-related memory Decline. Curr Biol. 2019;29(3):435–448.e8. doi: 10.1016/j.cub.2018.12.021
  • Shehata M, Abdou K, Choko K, et al. Autophagy Enhances memory Erasure through synaptic Destabilization. J Neurosci. 2018 Apr;38(15):3809–3822. doi: 10.1523/JNEUROSCI.3505-17.2018
  • Rowland AM, Richmond JE, Olsen JG, et al. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci. 2006 Feb;26(6):1711–1720. doi: 10.1523/JNEUROSCI.2279-05.2006
  • Shehata M, Matsumura H, Okubo-Suzuki R, et al. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci. 2012 Jul;32(30):10413–10422. doi: 10.1523/JNEUROSCI.4533-11.2012
  • Hui KK, Tanaka M. Autophagy links MTOR and GABA signaling in the brain. Autophagy. 2019 Oct;15(10):1848–1849. doi: 10.1080/15548627.2019.1637643
  • Hernandez D, Torres C, Setlik W, et al. Regulation of presynaptic neurotransmission by macroautophagy. Neuron. 2012 Apr;74(2):277–284. doi: 10.1016/j.neuron.2012.02.020
  • Murdoch JD, Rostosky C, Gowrisankaran S, et al. Endophilin-A deficiency induces the Foxo3a-Fbxo32 network in the brain and causes Dysregulation of autophagy and the Ubiquitin-Proteasome system. Cell Rep. 2016 Oct;17(4):1071–1086. doi: 10.1016/j.celrep.2016.09.058
  • Soukup S-F, Kuenen S, Vanhauwaert R, et al. A LRRK2-dependent EndophilinA Phosphoswitch is critical for macroautophagy at presynaptic terminals. Neuron. 2016 Nov;92(4):829–844. doi: 10.1016/j.neuron.2016.09.037
  • George AA, Hayden S, Holzhausen LC, et al. Synaptojanin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments. PLoS One. 2014;9(1):e84394. doi:10.1371/journal.pone.0084394
  • Vanhauwaert R, Kuenen S, Masius R, et al. The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals. EMBO J. 2017 May;36(10):1392–1411. doi: 10.15252/embj.201695773
  • Okerlund ND, Schneider K, Leal-Ortiz S, et al. Bassoon controls presynaptic autophagy through Atg5. Neuron. 2017 Feb;93(4):897–913.e7. doi: 10.1016/j.neuron.2017.01.026
  • Binotti B, Pavlos NJ, Riedel D, et al. The GTPase Rab26 links synaptic vesicles to the autophagy pathway. Elife. 2015 Feb;4:e05597.
  • Lüningschrör P, Binotti B, Dombert B, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8(1):678. doi: 10.1038/s41467-017-00689-z
  • Ortiz-Rodriguez A, Arevalo M-A. The Contribution of Astrocyte autophagy to Systemic Metabolism. Int J Mol Sci. 2020 Apr;21(7). doi: 10.3390/ijms21072479.
  • Bankston AN, Forston MD, Howard RM, et al. Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination. Glia. 2019 Sep;67(9):1745–1759. doi: 10.1002/glia.23646
  • Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci. 2020;40(2):256–266. doi: 10.1523/JNEUROSCI.1066-19.2019
  • Shen W, Ganetzky B. Autophagy promotes synapse development in Drosophila. J Cell Bio. 2009 Oct;187(1):71–79. doi: 10.1083/jcb.200907109
  • Tang G, Gudsnuk K, Kuo S-H, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014 Sep;83(5):1131–1143. doi: 10.1016/j.neuron.2014.07.040
  • Ban B-K, Jun M-H, Ryu H-H, et al. Autophagy negatively regulates early axon growth in cortical neurons. Mol Cell Biol. 2013 Oct;33(19):3907–3919. doi: 10.1128/MCB.00627-13.
  • Dragich JM, Kuwajima T, Hirose-Ikeda M, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. Elife. 2016 Sep;5. doi: 10.7554/eLife.14810.
  • Yamaguchi J, Suzuki C, Nanao T, et al. Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis. Autophagy. 2018;14(5):764–777. doi: 10.1080/15548627.2017.1314897
  • Kuijpers M, Kochlamazashvili G, Stumpf A, et al. Neuronal autophagy regulates presynaptic neurotransmission by controlling the axonal Endoplasmic Reticulum. Neuron. 2021 Jan;109(2):299–313.e9. doi: 10.1016/j.neuron.2020.10.005
  • Kallergi E, Daskalaki A-D, Kolaxi A, et al. Dendritic autophagy degrades postsynaptic proteins and is required for long-term synaptic depression in mice. Nat Commun. 2022;13(1):680. doi: 10.1038/s41467-022-28301-z