713
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

TRIM27 elicits protective immunity against tuberculosis by activating TFEB-mediated autophagy flux

, , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 1483-1504 | Received 29 Aug 2023, Accepted 16 Feb 2024, Published online: 04 Mar 2024

References

  • World Health Organization. Global Tuberculosis Report 2023. Geneva: World Health Organization; 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.
  • Tiberi S, Utjesanovic N, Galvin J, et al. Drug resistant TB – latest developments in epidemiology, diagnostics and management. Int J of Infect Dis. 2022;124(Suppl 1):S20–S25. doi: 10.1016/j.ijid.2022.03.026
  • World Health Organization. Global research agenda for antimicrobial resistance in human health. Geneva: World Health Organization; 2023. https://www.who.int/publications/m/item/global-research-agenda-for-antimicrobial-resistance-in-human-health.
  • Kaufmann SHE, Dorhoi A, Hotchkiss RS, et al. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov. 2018;17(1):35–56. doi: 10.1038/nrd.2017.162
  • Kolloli A, Subbian S. Host-directed therapeutic strategies for tuberculosis. Front Med. 2017;4:171. doi: 10.3389/fmed.2017.00171
  • Wallis RS, O’Garra A, Sher A, et al. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol. 2023;23(2):121–133. doi: 10.1038/s41577-022-00734-z
  • Roy A, Kumari Agnivesh P, Sau S, et al. Tweaking host immune responses for novel therapeutic approaches against mycobacterium tuberculosis. Drug Discov Today. 2023;28(9):103693. doi: 10.1016/j.drudis.2023.103693
  • Ndlovu H, Marakalala MJ. Granulomas and inflammation: host-directed therapies for tuberculosis. Front Immunol. 2016;7:434. doi: 10.3389/fimmu.2016.00434
  • Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and Carcinogenesis. Trends Biochem Sci. 2017;42(4):297–311. doi: 10.1016/j.tibs.2017.01.002
  • Gushchina LV, Kwiatkowski TA, Bhattacharya S, et al. Conserved structural and functional aspects of the tripartite motif gene family point towards therapeutic applications in multiple diseases. Pharmacol Ther. 2018;185:12–25. doi: 10.1016/j.pharmthera.2017.10.020
  • Di Rienzo M, Romagnoli A, Antonioli M, et al. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 2020;27(3):887–902. doi: 10.1038/s41418-020-0495-2
  • Giraldo MI, Hage A, van Tol S, et al. TRIM proteins in host Defense and viral pathogenesis. Curr Clin Microbiol Rep. 2020;7(4):101–114. doi: 10.1007/s40588-020-00150-8
  • Shen Z, Wei L, Yu Z-B, et al. The roles of TRIMs in antiviral innate immune signaling. Front Cell Infect Microbiol. 2021;11:628275. doi: 10.3389/fcimb.2021.628275
  • Chauhan S, Kumar S, Jain A, et al. Trims and Galectins Globally Cooperate and TRIM16 and galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell. 2016;39(1):13–27. doi: 10.1016/j.devcel.2016.08.003
  • Romagnoli A, Di Rienzo M, Petruccioli E, et al. The ubiquitin ligase TRIM32 promotes the autophagic response to mycobacterium tuberculosis infection in macrophages. Cell Death Dis. 2023;14(8):505. doi: 10.1038/s41419-023-06026-1
  • Lou J, Wang Y, Zheng X, et al. TRIM22 regulates macrophage autophagy and enhances mycobacterium tuberculosis clearance by targeting the nuclear factor–multiplicity κB/beclin 1 pathway. J Cell Biochem. 2018;119(11):8971–8980. doi: 10.1002/jcb.27153
  • Hoffpauir CT, Bell SL, West KO, et al. TRIM14 is a key regulator of the type I IFN response during mycobacterium tuberculosis infection. J Immunol. 2020;205(1):153–167. doi: 10.4049/jimmunol.1901511
  • Carthagena L, Bergamaschi A, Luna, JM, et al. Human TRIM gene expression in response to interferons. PLoS One. 2009;4(3):e4894. doi: 10.1371/journal.pone.0004894
  • Wang J, Teng JLL, Zhao D, et al. The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci Rep. 2016;6(1):34827. doi: 10.1038/srep34827
  • Kao CH, Su T-Y, Huang W-S, et al. TFEB- and TFE3-dependent autophagy activation supports cancer proliferation in the absence of centrosomes. Autophagy. 2022;18(12):2830–2850. doi: 10.1080/15548627.2022.2051880
  • Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–33. doi: 10.1126/science.1204592
  • Pan B, Li J, Parajuli N, et al. The calcineurin-TFEB-p62 pathway mediates the activation of cardiac macroautophagy by Proteasomal Malfunction. Circ Res. 2020;127(4):502–518. doi: 10.1161/CIRCRESAHA.119.316007
  • Lopez A, Fleming A, Rubinsztein DC. Seeing is believing: methods to monitor vertebrate autophagy in vivo. Open Biol. 2018;8(10). doi: 10.1098/rsob.180106
  • Mauvezin C, Neufeld TP. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015;11(8):1437–8. doi: 10.1080/15548627.2015.1066957
  • Wang L, Zhao C, Zheng T, et al. Torin 1 alleviates impairment of TFEB-mediated lysosomal biogenesis and autophagy in TGFBI (p.G623_H626del)-linked thiel-behnke corneal dystrophy. Autophagy. 2022;18(4):765–782. doi: 10.1080/15548627.2021.1955469
  • Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;22(11):733–750. doi: 10.1038/s41580-021-00392-4
  • Song JX, Sun Y-R, Peluso I, et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy. 2016;12(8):1372–89. doi: 10.1080/15548627.2016.1179404
  • Yang Y, Zhu Y, Zhou S, et al. TRIM27 cooperates with STK38L to inhibit ULK1-mediated autophagy and promote tumorigenesis. EMBO J. 2022;41(14):e109777. doi: 10.15252/embj.2021109777
  • Garcia-Garcia J, Berge AKM, Overå KS, et al. TRIM27 is an autophagy substrate facilitating mitochondria clustering and mitophagy via phosphorylated TBK1. FEBS J. 2023;290(4):1096–1116. doi: 10.1111/febs.16628
  • Kosugi S, Hasebe M, Tomita M, et al. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci USA. 2009;106(25):10171–6. doi: 10.1073/pnas.0900604106
  • Kosugi S, Hasebe M, Entani T, et al. Design of peptide inhibitors for the Importin α/β Nuclear Import Pathway by activity-based profiling. Chem Biol. 2008;15(9):940–949. doi: 10.1016/j.chembiol.2008.07.019
  • Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007;2(8):1849–1861. doi: 10.1038/nprot.2007.249
  • Seok S, Fu T, Choi S-E, et al. Transcriptional regulation of autophagy by an FXR–CREB axis. Nature. 2014;516(7529):108–111. doi: 10.1038/nature13949
  • Xie F, Li BX, Kassenbrock A, et al. Identification of a potent inhibitor of CREB-Mediated gene transcription with efficacious in vivo anticancer activity. J Med Chem. 2015;58(12):5075–87. doi: 10.1021/acs.jmedchem.5b00468
  • Gibbs ZA, Reza, LC, Cheng, CC, et al. The Testis Protein ZNF165 Is a SMAD3 Cofactor That Coordinates Oncogenic TGFbeta Signaling In Triple-Negative Breast Cancer. Elife. 2020;9:e57679.
  • Kato T, Enomoto A, Watanabe T, et al. TRIM27/MRTF-B-Dependent integrin β1 expression defines leading cells in cancer cell collectives. Cell Rep. 2014;7(4):1156–1167. doi: 10.1016/j.celrep.2014.03.068
  • Hasegawa N, Iwashita T, Asai N, et al. A RING finger motif regulates transforming activity of the rfp/ret fusion gene. Biochem Biophys Res Commun. 1996;225(2):627–31. doi: 10.1006/bbrc.1996.1221
  • Zurek B, Schoultz I, Neerincx A, et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation. PLoS One. 2012;7(7):e41255. doi: 10.1371/journal.pone.0041255
  • Naqvi S, Martin KJ, Arthur JS. CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J. 2014;458(3):469–79. doi: 10.1042/BJ20131115
  • Islam T. Infectious diseases surveillance update. Lancet Infect Dis. 2022;22(7):952. doi: 10.1016/S1473-3099(22)00381-4
  • Cloherty APM, Rader AG, Compeer B, et al. Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and innate immune sensor functioning. Viruses. 2021;13(2):320. doi: 10.3390/v13020320
  • Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42. doi: 10.1016/j.cell.2018.09.048
  • Ribeiro CM, Sarrami-Forooshani R, Setiawan LC, et al. Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature. 2016;540(7633):448–452. doi: 10.1038/nature20567
  • Sparrer KMJ, Gableske S, Zurenski MA, et al. TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat Microbiol. 2017;2(11):1543–1557. doi: 10.1038/s41564-017-0017-2
  • Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73. doi: 10.1089/ars.2013.5371
  • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42. doi: 10.1126/scisignal.2002790
  • Brady OA, Martina JA, Puertollano R. Emerging roles for TFEB in the immune response and inflammation. Autophagy. 2018;14(2):181–189. doi: 10.1080/15548627.2017.1313943
  • Chen M, Dai Y, Liu S, et al. TFEB Biology And Agonists At a Glance. Cells. 2021;10(2):333
  • Nnah IC, Wang B, Saqcena C, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15(1):151–164. doi: 10.1080/15548627.2018.1511504
  • Sha Y, Rao L, Settembre C, et al. STUB 1 regulates TFEB -induced autophagy–lysosome pathway. EMBO J. 2017;36(17):2544–2552. doi: 10.15252/embj.201796699
  • Napolitano G, Esposito A, Choi H, et al. mTOR-dependent phosphorylation controls TFEB nuclear export. Nat Commun. 2018;9(1):3312. doi: 10.1038/s41467-018-05862-6
  • Paik S, Kim JK, Chung C, et al. Autophagy: a new strategy for host-directed therapy of tuberculosis. Virulence. 2019;10(1):448–459. doi: 10.1080/21505594.2018.1536598
  • Chee CB, Barkham TMS, KhinMar KW, et al. Quantitative T-cell interferon-gamma responses to Mycobacterium tuberculosis-specific antigens in active and latent tuberculosis. Eur J Clin Microbiol Infect Dis. 2009;28(6):667–70. doi: 10.1007/s10096-008-0670-8
  • Wagstaff AJ, Zellweger JP. T-SPOT.TB: an in vitro diagnostic assay measuring T-cell reaction to Mycobacterium tuberculosis-specific antigens. Mol Diagn Ther. 2006;10(1):57–63. doi: 10.1007/BF03256443 discussion 64-5.
  • Herrera V, Perry S, Parsonnet J, et al. Clinical application and Limitations of Interferon- release assays for the diagnosis of latent tuberculosis infection. Clin Infect Dis. 2011;52(8):1031–1037. doi: 10.1093/cid/cir068
  • Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun. 2019;10(1):1973. doi: 10.1038/s41467-019-09955-8
  • Wang J, Li B-X, Ge P-P, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat Immunol. 2015;16(3):237–45. doi: 10.1038/ni.3096
  • Wang T, Ren Y, Liu R, et al. miR-195-5p suppresses the proliferation, migration, and invasion of oral squamous cell carcinoma by targeting TRIM14. Biomed Res Int. 2017;2017:1–13. doi: 10.1155/2017/7378148
  • Rimal B, Senzani S, Ealand C, et al. Peptidoglycan compositional analysis of mycobacterium smegmatis using high-resolution LC–MS. Sci Rep. 2022;12(1):11061. doi: 10.1038/s41598-022-15324-1
  • De P, Amin AG, Flores D, et al. Structural implications of lipoarabinomannan glycans from global clinical isolates in diagnosis of Mycobacterium tuberculosis infection. J Biol Chem. 2021;297(5):101265. doi: 10.1016/j.jbc.2021.101265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.