1,010
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging dimensions of autophagy in melanoma

, &
Pages 1700-1711 | Received 19 May 2023, Accepted 10 Mar 2024, Published online: 21 Mar 2024

References

  • Switzer B, Puzanov I, Skitzki JJ, et al. Managing metastatic melanoma in 2022: a Clinical Review. JCO Oncol Pract. 2022;18(5):335–351. doi: 10.1200/OP.21.00686
  • Gray-Schopfer V, Wellbrock C, Marais R, et al. Melanoma biology and new targeted therapy. Nature. 2007;445(7130):851–857. doi: 10.1038/nature05661
  • Davis LE, Shalin SC, Tackett AJ, et al. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11):1366–1379. doi: 10.1080/15384047.2019.1640032
  • Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. doi: 10.1038/nature00766
  • Wong DJL, Ribas A. Targeted therapy for melanoma. In: Melanoma Kaufman, H.L. and Mehnert, J.M., eds. Switzerland: Springer International Publishing; 2016. pp. 251–262.
  • Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Sig Transduct Target Ther 2021;6(1):424. doi: 10.1038/s41392-021-00827-6
  • Levine B, Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in physiology or medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci, USA 114.(2):201–205. doi: 10.1073/pnas.1619876114
  • Deter RL, Baudhuin P, de Duve C, et al. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Bio. 1967;35(2):C11–6. doi: 10.1083/jcb.35.2.C11
  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333(1–2):169–174. doi: 10.1016/0014-5793(93)80398-E
  • White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–410. doi: 10.1038/nrc3262
  • Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157(1):65–75. doi: 10.1016/j.cell.2014.02.049
  • Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41. doi: 10.1038/cr.2013.168
  • Choi AM, Ryter SW, Levine B, et al. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–662. doi: 10.1056/NEJMra1205406
  • Rahmati M, Ebrahim S, Hashemi S, et al. New insights on the role of autophagy in the pathogenesis and treatment of melanoma. Mol Biol Rep. 2020;47(11):9021–9032. doi: 10.1007/s11033-020-05886-6
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–31. doi: 10.1016/j.ceb.2009.11.014
  • Yamamoto H, Zhang S, Mizushima N, et al. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382–400. doi: 10.1038/s41576-022-00562-w
  • Trefts E, Shaw RJ. AMPK: restoring metabolic homeostasis over space and time. Mol Cell. 2021;81(18):3677–3690. doi: 10.1016/j.molcel.2021.08.015
  • Glick D, Barth S, Macleod KF, et al. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. doi: 10.1002/path.2697
  • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42. doi: 10.1126/scisignal.2002790
  • Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861–73. doi: 10.1101/gad.1599207
  • Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004–10. doi: 10.1038/nrm2529
  • Levine B, Yuan J Autophagy in cell death: an innocent convict? J Clin Investig (2005);115(10):2679–2688. doi: 10.1172/JCI26390
  • Debnath J, Gammoh N, Ryan KM, et al. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24(8):560–575. doi: 10.1038/s41580-023-00585-z
  • Liu H, He Z, von Rütte T, et al. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med. 2013;5(202):202ra123. doi: 10.1126/scitranslmed.3005864
  • Miracco C, Cevenini G, Franchi A, et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol. 2010;41(4):503–12. doi: 10.1016/j.humpath.2009.09.004
  • Hara Y, Nakamura M. Overexpression of autophagy-related beclin-1 in advanced malignant melanoma and its low expression in melanoma-in-situ. Eur J Dermatol. 2012;22(1):128–9. doi: 10.1684/ejd.2011.1562
  • Liu H, He Z, Simon H-U, et al. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy. 2014;10(2):372–3. doi: 10.4161/auto.27163
  • Frangež Ž, Gérard D, He Z, et al. ATG5 and ATG7 Expression Levels Are Reduced in Cutaneous melanoma and regulated by NRF1. Front Oncol. 2021;11. doi: 10.3389/fonc.2021.721624
  • Rosenfeldt MT, O’Prey J, Lindsay CR, et al. Loss of autophagy affects melanoma development in a manner dependent on PTEN status. Cell Death Differ. 2021;28(4):1437–1439. doi: 10.1038/s41418-021-00746-7
  • Xie X, Koh JY, Price S, et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 2015;5(4):410–23. doi: 10.1158/2159-8290.CD-14-1473
  • Guo JY, Chen H-Y, Mathew R, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25(5):460–70. doi: 10.1101/gad.2016311
  • Rosenfeldt MT, O’Prey J, Morton JP, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013;504(7479):296–300. doi: 10.1038/nature12865
  • Yang A, Kimmelman AC. Inhibition of autophagy attenuates pancreatic cancer growth independent of TP53/TRP53 status. Autophagy. 2014;10(9):1683–1684. doi: 10.4161/auto.29961
  • Ma XH, Piao S, Wang D, et al. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res. 2011;17(10):3478–89. doi: 10.1158/1078-0432.CCR-10-2372
  • Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19. doi: 10.1056/NEJMoa1002011
  • Ma XH, Piao S-F, Dey S, et al. Targeting ER stress–induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 2014;124(3):1406–1417. doi: 10.1172/JCI70454
  • Corazzari M, Rapino F, Ciccosanti F, et al. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Diff. 2015;22(6):946–958. doi: 10.1038/cdd.2014.183
  • Mandula JK, Chang S, Mohamed E, et al. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell. 2022;40(10):1145–1160.e9. doi: 10.1016/j.ccell.2022.08.016
  • Verginadis II, Avgousti H, Monslow J, et al. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol 2022;24(6):940–953. doi: 10.1038/s41556-022-00918-8
  • Yeom H, Hwang S-H, Han B-I, et al. Differential sensitivity of wild-type and BRAF-Mutated cells to combined BRAF and autophagy inhibition. Biomol Ther. 2021;29(4):434–444. doi: 10.4062/biomolther.2020.203
  • Li S, Song Y, Quach C, et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat Commun. 2019;10(1):1693. doi: 10.1038/s41467-019-09634-8
  • Settembre C, Medina DL (2015) TFEB and the CLEAR network. Methods Cell Biol 126, 45–62.
  • Chauhan S, Goodwin J, Chauhan S, et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell. 2013;50(1):16–28. doi: 10.1016/j.molcel.2013.01.024
  • Marsh T, Kenific CM, Suresh D, et al. Autophagic degradation of NBR1 restricts metastatic outgrowth during mammary tumor progression. Dev Cell. 2020;52(5):591–604.e6. doi: 10.1016/j.devcel.2020.01.025
  • Wei Y, Zou Z, Becker N, et al. EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154(6):1269–84. doi: 10.1016/j.cell.2013.08.015
  • Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177(7):1682–1699. doi: 10.1016/j.cell.2019.05.026
  • Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res. 2007;17(10):839–49. doi: 10.1038/cr.2007.78
  • Karras P, Riveiro-Falkenbach E, Cañón E, et al. p62/SQSTM1 fuels melanoma progression by opposing mRNA decay of a selective set of pro-metastatic factors. Cancer Cell 2019;35(1):46–63.e10. doi: 10.1016/j.ccell.2018.11.008
  • Zhao Z, Oh S, Li D, et al. A dual role for UVRAG in maintaining chromosomal stability independent of autophagy. Dev Cell. 2012;22(5):1001–16. doi: 10.1016/j.devcel.2011.12.027
  • Yang Y, He S, Wang Q, et al. Autophagic UVRAG Promotes UV-Induced Photolesion Repair by activation of the CRL4(DDB2) E3 ligase. Mol Cell 2016;62(4): 507–519. doi: 10.1016/j.molcel.2016.04.014
  • Di Leo L, Bodemeyer V, Bosisio FM, et al. Loss of Ambra1 promotes melanoma growth and invasion. Nat Commun. 2021;12(1):2550. doi: 10.1038/s41467-021-22772-2
  • Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Curr Oncol Rep. 2008;10(5):439–46. doi: 10.1007/s11912-008-0067-y
  • Ma Y, Galluzzi L, Zitvogel L, et al. Autophagy and cellular immune responses. Immunity. 2013;39(2):211–27. doi: 10.1016/j.immuni.2013.07.017
  • Zhong Z, Sanchez-Lopez E, Karin M, et al. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell. 2016;166(2):288–298. doi: 10.1016/j.cell.2016.05.051
  • Luo X, Qiu Y, Dinesh P, et al. The functions of autophagy at the tumour-immune interface. J Cell Mol Med. 2021;25(5):2333–2341. doi: 10.1111/jcmm.16331
  • Shu Q, Zhou Y, Zhu Z, et al. A novel risk Model based on autophagy-related LncRNAs predicts prognosis and indicates immune infiltration landscape of patients with cutaneous melanoma. Front Genet. 2022;13:885391. doi: 10.3389/fgene.2022.885391
  • Zhang C, Sun Y, Li S, et al. Autophagic flux restoration enhances the antitumor efficacy of tumor infiltrating lymphocytes. J Immunother Cancer. 2022;10(10):e004868. doi: 10.1136/jitc-2022-004868
  • Zhang C, Sun Y, Li S, et al. Autophagic flux restoration of senescent T cells improves antitumor activity of TCR-engineered T cells. Clin Transl Immunology. 2022;11(9):e1419. doi: 10.1002/cti2.1419
  • Jin Z, Sun X, Wang Y, et al. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Front Immunol. 2022;13:1018903. doi: 10.3389/fimmu.2022.1018903
  • Prieto K, Lozano MP, Urueña C, et al. The delay in cell death caused by the induction of autophagy by P2Et extract is essential for the generation of immunogenic signals in melanoma cells. Apoptosis. 2020;25(11–12):875–888. doi: 10.1007/s10495-020-01643-z
  • Li Y, Wang L-X, Yang G, et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008;68(17):6889–95. doi: 10.1158/0008-5472.CAN-08-0161
  • Di Biase S, Lee C, Brandhorst S, et al. Fasting-mimicking diet reduces HO-1 to promote T Cell-mediated tumor cytotoxicity. Cancer Cell. 2016;30(1):136–146. doi: 10.1016/j.ccell.2016.06.005
  • Pietrocola F, Pol J, Kroemer G, et al. Fasting improves anticancer immunosurveillance via autophagy induction in malignant cells. Cell Cycle. 2016;15(24):3327–3328. doi: 10.1080/15384101.2016.1224797
  • Castoldi F, Vacchelli E, Zitvogel L, et al. Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy. Oncoimmunology. 2019;8(1):e1498285. doi: 10.1080/2162402X.2018.1498285
  • Martins I, Michaud M, Sukkurwala AQ, et al. Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy. 2012;8(3):413–5. doi: 10.4161/auto.19009
  • Loi M, Müller A, Steinbach K, et al. Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8 + T Cell Responses. Cell Rep 2016;15(5):1076–1087. doi: 10.1016/j.celrep.2016.04.002
  • Munz C. The Macroautophagy Machinery in MHC restricted antigen presentation. Front Immunol. 2021;12:628429. doi: 10.3389/fimmu.2021.628429
  • Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581(7806):100–105. doi: 10.1038/s41586-020-2229-5
  • Deng J, Thennavan A, Dolgalev I, et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nat Cancer 2021;2(5):503–514. doi: 10.1038/s43018-021-00208-6
  • Poillet-Perez L, Sharp DW, Yang Y, et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat Cancer 20201(9):923–934. doi: 10.1038/s43018-020-00110-7
  • Qiao Y, Choi JE, Tien JC, et al. Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer. Nat Cancer. 2021;2(9):978–993. doi: 10.1038/s43018-021-00237-1
  • Lawson KA, Sousa CM, Zhang X, et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature. 2020;586(7827):120–126. doi: 10.1038/s41586-020-2746-2
  • Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. doi: 10.1016/j.cell.2015.03.030
  • Shukla SA, Bachireddy P, Schilling B, et al. Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade. Cell 2018;173(3):624–633.e8. doi: 10.1016/j.cell.2018.03.026
  • Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. Cancer Discov 2016;6(2):202–216. doi: 10.1158/2159-8290.CD-15-0283
  • Michaud M, Xie X, Bravo-San Pedro JM, et al. An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology. 2014;3(7):e944047. doi: 10.4161/21624011.2014.944047
  • Florêncio KGD, Edson EA, Fernandes KSDS, et al. Chromomycin A(5) induces bona fide immunogenic cell death in melanoma. Front Immunol. 2022;13:941757. doi: 10.3389/fimmu.2022.941757
  • Zhou H, Tu C, Yang P, et al. Carbon ion radiotherapy triggers immunogenic cell death and sensitizes melanoma to anti-PD-1 therapy in mice. Oncoimmunology. 2022;11(1):2057892. doi: 10.1080/2162402X.2022.2057892
  • Tschernia NP, Gulley JL. Tumor in the Crossfire: inhibiting TGF-β to enhance cancer immunotherapy. BioDrugs. 2022;36(2):153–180. doi: 10.1007/s40259-022-00521-1
  • Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554(7693):538–543. doi: 10.1038/nature25492
  • Horn LA, Chariou PL, Gameiro SR, et al. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1–mediated tumor eradication. J Clin Invest. 2022;132(8). doi: 10.1172/JCI155148
  • Chen D, Xie J, Fiskesund R, et al. Publisher correction: chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9(1):1808. doi: 10.1038/s41467-018-04169-w
  • Chen D, Xie J, Fiskesund R, et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat Commun. 2018;9(1):873. doi: 10.1038/s41467-018-03225-9
  • Gartrell-Corrado RD, Chen AX, Rizk EM, et al. Linking transcriptomic and imaging data defines features of a favorable tumor immune microenvironment and identifies a combination biomarker for primary melanoma. Cancer Res. 2020;80(5):1078–1087. doi: 10.1158/0008-5472.CAN-19-2039
  • Mgrditchian T, Arakelian T, Paggetti J, et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc Natl Acad Sci USA. 2017;114(44):E9271–e9279. doi: 10.1073/pnas.1703921114
  • Wang S, Xia P, Huang G, et al. FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun. 2016;7(1):11023. doi: 10.1038/ncomms11023
  • Seo W, Shimizu K, Kojo S, et al. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat Commun. 2020;11(1):1562. doi: 10.1038/s41467-020-15375-w
  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. doi: 10.1016/j.cell.2007.12.018
  • Petherick KJ, Conway OJL, Mpamhanga C, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem. 2015;290(18):11376–83. doi: 10.1074/jbc.C114.627778
  • Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorg Med Chem. 2015;23(17):5483–8. doi: 10.1016/j.bmc.2015.07.034
  • Egan DF, Chun MH, Vamos M, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell. 2015;59(2):285–97. doi: 10.1016/j.molcel.2015.05.031
  • Chaikuad A, Koschade SE, Stolz A, et al. Conservation of structure, function and inhibitor binding in UNC-51-like kinase 1 and 2 (ULK1/2). Biochem J. 2019;476(5):875–887. doi: 10.1042/BCJ20190038
  • Tolcher AW, Hong DS, Vandross AL, et al. A phase 1/2 study of DCC-3116 as a single agent and in combination with trametinib in patients with advanced or metastatic solid tumors with RAS or RAF mutations. J Clin Oncol. 2022;40(16_suppl):TPS3178–TPS3178. doi: 10.1200/JCO.2022.40.16_suppl.TPS3178
  • Bago R, Malik N, Munson M, et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J. 2014;463(3):413–27. doi: 10.1042/BJ20140889
  • Ronan B, Flamand O, Vescovi L, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol. 2014;10(12):1013–9. doi: 10.1038/nchembio.1681
  • Amaravadi RK, Lippincott-Schwartz J, Yin X-M, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17(4):654–66. doi: 10.1158/1078-0432.CCR-10-2634
  • Xie X, White EP, Mehnert JM, et al. Coordinate autophagy and mTOR pathway inhibition enhances cell death in melanoma. PloS One. 2013;8(1):e55096. doi: 10.1371/journal.pone.0055096
  • Chude CI, Amaravadi RK. Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci. 2017;18(6):1279. doi: 10.3390/ijms18061279
  • Mehnert JM, Mitchell TC, Huang AC, et al. BAMM (BRAF autophagy and MEK inhibition in melanoma): a phase I/II trial of Dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma. Clin Cancer Res. 2022;28(6):1098–1106. doi: 10.1158/1078-0432.CCR-21-3382
  • Awada G, Schwarze JK, Tijtgat J, et al. A lead-in safety study followed by a phase 2 clinical trial of dabrafenib, trametinib and hydroxychloroquine in advanced BRAFV600 mutant melanoma patients previously treated with BRAF-/MEK-inhibitors and immune checkpoint inhibitors. Melanoma Res. 2022;32(3):183–191. doi: 10.1097/CMR.0000000000000821
  • Maycotte P, Aryal S, Cummings CT, et al. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8(2):200–12. doi: 10.4161/auto.8.2.18554
  • Eng CH, Wang Z, Tkach D, et al. Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci U S A. 2016;113(1):182–7. doi: 10.1073/pnas.1515617113
  • Maes H, Kuchnio A, Peric A, et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26(2):190–206. doi: 10.1016/j.ccr.2014.06.025
  • Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5(11):886–97. doi: 10.1038/nrc1738
  • Gallagher LE, Radhi OA, Abdullah MO, et al. Lysosomotropism depends on glucose: a chloroquine resistance mechanism. Cell Death Dis. 2017;8(8):e3014. doi: 10.1038/cddis.2017.416
  • Luciani F, Spada M, De Milito A, et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst. 2004;96(22):1702–13. doi: 10.1093/jnci/djh305
  • Zhitomirsky B, Assaraf YG. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget. 2017;8(28):45117–45132. doi: 10.18632/oncotarget.15155
  • Rebecca VW, Nicastri MC, Fennelly C, et al. PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov. 2019;9(2):220–229. doi: 10.1158/2159-8290.CD-18-0706
  • Lakhter AJ, Sahu RP, Sun Y, et al. Chloroquine promotes apoptosis in melanoma cells by inhibiting BH3 domain–mediated PUMA degradation. J Invest Dermatol 2013;133(9):2247–2254. doi: 10.1038/jid.2013.56
  • Accapezzato D, Visco V, Francavilla V, et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med. 2005;202(6):817–28. doi: 10.1084/jem.20051106
  • Tian AL, Wu Q, Liu P, et al. Lysosomotropic agents including azithromycin, chloroquine and hydroxychloroquine activate the integrated stress response. Cell Death Dis. 2021;12(1):6. doi: 10.1038/s41419-020-03324-w
  • Humeau J, Bezu L, Kepp O, et al. EIF2α phosphorylation: a hallmark of both autophagy and immunogenic cell death. Mol Cell Oncol 2020;7(5):1776570. doi: 10.1080/23723556.2020.1776570
  • Zhitomirsky B, Yunaev A, Kreiserman R, et al. Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 2018;9(12):1191. doi: 10.1038/s41419-018-1227-0
  • Humeau J, Sauvat A, Kepp O, et al. An unexpected link between immunogenic cell death and inhibition of gene transcription. Oncoimmunology. 2020;9(1):1792039. doi: 10.1080/2162402X.2020.1792039
  • Vakifahmetoglu-Norberg H, Xia H-G, Yuan J, et al. Pharmacologic agents targeting autophagy. J Clin Invest. 2015;125(1):5–13. doi: 10.1172/JCI73937
  • Galluzzi L, Bravo-San Pedro JM, Levine B, et al. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16(7):487–511. doi: 10.1038/nrd.2017.22
  • Shoji-Kawata S, Sumpter R, Leveno M, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–6. doi: 10.1038/nature11866
  • Vega-Rubin-de-Celis S, Zou Z, Fernández ÁF, et al. Increased autophagy blocks HER2-mediated breast tumorigenesis. Proc Natl Acad Sci U S A. 2018;115(16):4176–4181. doi: 10.1073/pnas.1717800115
  • Wang C, Niederstrasser H, Douglas PM, et al. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat Commun. 2017;8(1):2270. doi: 10.1038/s41467-017-02332-3
  • Frankel AE, Eskiocak U, Gill JG, et al. Digoxin plus trametinib therapy achieves disease control in BRAF wild-type metastatic melanoma patients. Neoplasia. 2017;19(4):255–260. doi: 10.1016/j.neo.2017.01.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.