2,650
Views
46
CrossRef citations to date
0
Altmetric
Review

Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment

ORCID Icon, ORCID Icon & ORCID Icon
Pages 15-24 | Received 07 Apr 2017, Accepted 28 Jun 2017, Published online: 21 Jul 2017

References

  • United Nations Office on Drugs and Crime (UNODC). World Drug Report 2016; [cited 2017 May 11]; Available from: www.unodc.org/doc/wdr2016/WORLD_DRUG_REPORT_2016_web.pdf.
  • Azofeifa A, Mattson ME, Schauer G, et al. National estimates of marijuana use and related indicators – National Survey on Drug Use and Health, United States, 2002–2014. MMWR Surveill Summ. 2016;65:1–25.
  • Wilkinson ST, Yarnell S, Radhakrishnan R, et al. Marijuana legalization: impact on physicians and public health. Annu Rev Med. 2016;67:453–466.
  • ElSohly MA, Mehmedic Z, Foster S, et al. Changes in cannabis potency over the last 2 decades (1995–2014): analysis of current data in the United States. Biol Psychiatry. 2016;79:613–619.
  • Kim HS, Anderson JD, Saghafi O, et al. Cyclic vomiting presentations following marijuana liberalization in Colorado. Acad Emerg Med. 2015;22:694–699.
  • Bruguera P, López-Pelayo H, Miquel L, et al. Elevada prevalencia del síndrome de hiperémesis cannábica en pacientes consumidores de cánnabis. Emergencias 2016;28:249–251.
  • Allen JH, de Moore GM, Heddle R, et al. Cannabinoid hyperemesis: cyclical hyperemesis in association with chronic cannabis use. Gut 2004;53:1566–1570.
  • Kim HS, Monte AA. Colorado cannabis legalization and its effect on emergency care. Ann Emerg Med. 2016;68:71–75.
  • Maxwell JC, Mendelson B. What do we know now about the impact of the laws related to marijuana? J Addict Med. 2016;10:3–12.
  • Darmani NA. Cannabinoid-induced hyperemesis: a conundrum-from clinical recognition to basic science mechanisms. Pharmaceuticals (Basel). 2010;3:2163–2177.
  • Galli JA, Sawaya RA, Friedenberg FK. Cannabinoid hyperemesis syndrome. Curr Drug Abuse Rev. 2011;4:241–249.
  • Simonetto DA, Oxentenko AS, Herman ML, et al. Cannabinoid hyperemesis: a case series of 98 patients. Mayo Clin Proc. 2012;87:114–119.
  • Richards JR, Gordon BK, Danielson AR, et al. Pharmacologic treatment of cannabinoid hyperemesis syndrome: a systematic review. Pharmacotherapy 2017;37:725–734.
  • Lapoint J. Capsaicin cream for treatment of cannabinoid hyperemesis syndrome. J Med Toxicol. 2014;10:77.
  • Lapoint J. Case series of patients treated for cannabinoid hyperemesis syndrome with capsaicin cream. Clin Toxicol. 2014;52:707. (Abstract)
  • Biary R, Oh A, Lapoint J, et al. Topical capsaicin cream used as a therapy for cannabinoid hyperemesis syndrome. Clin Toxicol. 2014;52:787. (Abstract)
  • Román F, Llorens P, Burillo-Putze G. Topical capsaicin cream in the treatment for cannabinoid hyperemesis syndrome. Med Clin (Barc). 2016;147:517–518.
  • Burillo-Putze G, Llorens P. Perspectives in the treatment for cannabinoid hyperemesis syndrome. Adicciones 2017;29:134–135.
  • Dezieck L, Hafez Z, Conicella A, et al. Resolution of cannabis hyperemesis syndrome with topical capsaicin in the emergency department: A case series. Clin Toxicol. Forthcoming. [cited 11 May 2017]. DOI:10.1080/15563650.2017.1324166.
  • Hayman M, Kam PCA. Capsaicin: a review of its pharmacology and clinical applications. Curr Anaesth Crit Care. 2008;19:338–343.
  • Senese F, Fire and spice: the molecular basis of flavor; [cited 2017 May 11]; Available at: antoine.frostburg.edu/chem/senese/101/features/capsaicin.shtml.
  • Sawynok J. Topical analgesics in neuropathic pain. Curr Pharm Des. 2005;11:2995–3004.
  • Perry L, Dickau R, Zarrillo S, et al. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science. 2007;315:986–968.
  • Scoville WC. Note on capsicums. J Am Pharm Assoc. 1912;1:453–454.
  • Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51:159–212.
  • Bode AM, Dong Z. The two faces of capsaicin. Cancer Res. 2011;71:2809–2814.
  • Babbar S, Marier JF, Mouksassi MS, et al. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther Drug Monit. 2009;31:502–510.
  • Reilly CA, Yost GS. Structural and enzymatic parameters that determine alkyl dehydrogenation/hydroxylation of capsaicinoids by cytochrome p450 enzymes. Drug Metab Dispos. 2005;33:530–536.
  • Chanda S, Bashir M, Babbar S, et al. In vitro hepatic and skin metabolism of capsaicin. Drug Metab Dispos. 2008;36:670–675.
  • Turnbull A. Tincture of capsaicin as a remedy for chilblains and toothache. Dublin Free Press 1850;1:95–96.
  • Rains C, Bryson HM. Topical capsaicin. A review of its pharmacological properties and therapeutic potential in post-herpetic neuralgia, diabetic neuropathy and osteoarthritis. Drugs Aging.1995;7:317–328.
  • Baranidharan G, Das S, Bhaskar A. A review of the high-concentration capsaicin patch and experience in its use in the management of neuropathic pain. Ther Adv Neurol Disord. 2013;6:287–297.
  • Derry S, Rice AS, Cole P, et al. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;1:CD007393.
  • Jancsó N, Jancsó-Gábor A, Szolcsányi J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother. 1967;31:138–151.
  • Szolcsányi J. Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides. 2004;38:377–384.
  • Montell C, Rubin GM. Molecular characterization of the Drosophila TRP locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2:1313–1323.
  • Bevan S, Szolcsányi J. Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci. 1990;11:330–333.
  • Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824.
  • Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev. 1991;43:143–201.
  • Kárai LJ, Russell JT, Iadarola MJ, et al. Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. J Biol Chem. 2004;279:16377–16387.
  • Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387–396.
  • Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther. 2007;114:13–33.
  • Benarroch EE. Synaptic effects of cannabinoids: complexity, behavioral effects, and potential clinical implications. Neurology. 2014;83:1958–1967.
  • Pertwee RG. Endocannabinoids and their pharmacological actions. Handb Exp Pharmacol. 2015;231:1–37.
  • Chen J, Varga A, Selvarajah S, et al. Spatial distribution of the cannabinoid type 1 and capsaicin receptors may contribute to the complexity of their crosstalk. Sci Rep. 2016;6:33307.
  • Van Der Stelt M, Di Marzo V. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem. 2004;271:1827–1834.
  • Akerman S, Kaube H, Goadsby PJ. Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther. 2004;309:56–63.
  • Akerman S, Kaube H, Goadsby PJ. Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol. 2004;142:1354–1360.
  • Engel MA, Izydorczyk I, Mueller-Tribbensee SM, et al. Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. Neuropeptides. 2011;45:229–237.
  • Marichal-Cancino BA, Altamirano-Espinoza AH, Manrique-Maldonado G, et al. Role of pre-junctional CB1, but not CB2, TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats. Basic Clin Pharmacol Toxicol. 2014;114:240–247.
  • Hoffmann J, Supronsinchai W, Andreou AP, et al. Olvanil acts on transient receptor potential vanilloid channel 1 and cannabinoid receptors to modulate neuronal transmission in the trigeminovascular system. Pain. 2012;153:2226–2232.
  • Levinthal DJ, Bielefeldt K. Adult cyclical vomiting syndrome: a disorder of allostatic regulation? Exp Brain Res. 2014;232:2541–2547.
  • Richards JR. Cannabinoid hyperemesis syndrome: a disorder of the HPA axis and sympathetic nervous system? Med Hypotheses. 2017;103:90–95.
  • Moreira FA, Aguiar DC, Terzian AL, et al. Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin? Neuroscience. 2012;204:186–192.
  • Di Marzo V, De Petrocellis L. Endocannabinoids as regulators of transient receptor potential (TRP) channels: a further opportunity to develop new endocannabinoid-based therapeutic drugs. Curr Med Chem. 2010;17:1430–1449.
  • Sanger GJ, Chang L, Bountra C, et al. Challenges and prospects for pharmacotherapy in functional gastrointestinal disorders. Therap Adv Gastroenterol. 2010;3:291–305.
  • Larauche M, Mulak A, Tache Y. Stress and visceral pain: from animal models to clinical therapies. Exp Neurol. 2012;233:49–67.
  • Hong S, Fan J, Kemmerer ES, et al. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut. 2009;58:202–210.
  • Zhou Q, Verne GN. miRNA-based therapies for the irritable bowel syndrome. Expert Opin Biol Ther. 2011;11:991–995.
  • Hong S, Zheng G, Wiley JW. Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology. 2015;148:148–157.e7.
  • Lee SH, Ledri M, Tóth B, et al. Multiple forms of endocannabinoid and endovanilloid signaling regulate the tonic control of GABA release. J Neurosci. 2015;35:10039–10057.
  • Gaston TE, Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav. 2017;70:313–318.
  • Izzo AA, Borrelli F, Capasso R, et al. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci. 2009;30:515–527.
  • Morales P, Hurst DP, Reggio PH. Molecular targets of the phytocannabinoids: a complex picture. Prog Chem Org Nat Prod. 2017;103:103–131.
  • Iannotti FA, Hill CL, Leo A, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci. 2014;5:1131–1141.
  • Chang YH, Windish D. Cannabinoid hyperemesis relieved by compulsive bathing. Mayo Clin Proc. 2009;84:76–78.
  • Wenger T, Moldrich G. The role of endocannabinoids in the hypothalamic regulation of visceral function. Prostaglandins Leukot Essent Fatty Acids. 2002;66:301–307.
  • Thomas KN, van Rij AM, Lucas SJ, et al. Lower-limb hot-water immersion acutely induces beneficial hemodynamic and cardiovascular responses in peripheral arterial disease and healthy, elderly controls. Am J Physiol Regul Integr Comp Physiol. 2016;312:R281–R291.
  • Nagasawa Y, Komori S, Sato M, et al. Effects of hot bath immersion on autonomic activity and hemodynamics: comparison of the elderly patient and the healthy young. Jpn Circ J. 2001;65:587–592.
  • Figueroa-Rivera IM, Estremera-Marcial R, Sierra-Mercado M, et al. Cannabinoid hyperemesis syndrome: a paradoxical cannabis effect. Case Rep Gastrointest Med. 2015;2015:405238.
  • Gavva NR. Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci. 2008;29:550–557.
  • Fosgerau K, Weber UJ, Gotfredsen JW, et al. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist. BMC Cardiovasc Disord. 2010;10:51.
  • Cao Z, Balasubramanian A, Marrelli SP. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am J Physiol Regul Integr Comp Physiol. 2014;306:R149–R156.
  • Gavva NR, Treanor JJ, Garami A, et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain. 2008;136:202–210.
  • Carnevale V, Rohacs T. TRPV1: a target for rational drug design. Pharmaceuticals (Basel). 2016;9:pii:E52.
  • Han P, McDonald HA, Bianchi BR, et al. Capsaicin causes protein synthesis inhibition and microtubule disassembly through TRPV1 activities both on the plasma membrane and intracellular membranes. Biochem Pharmacol. 2007;73:1635–1645.
  • Shimomura Y, Kawada T, Suzuki M. Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch Biochem Biophys. 1989;270:573–577.
  • Lukacs V, Yudin Y, Hammond GR, et al. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons. J Neurosci. 2013;33:11451–11463.
  • Rohacs T. Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch. 2015;467:1851–1869.
  • Sanz-Salvador L, Andrés-Borderia A, Ferrer-Montiel A, et al. Agonist- and Ca2+-dependent desensitization of TRPV1 channel targets the receptor to lysosomes for degradation. J Biol Chem. 2012;287:19462–19471.
  • Docherty RJ, Yeats JC, Bevan S, et al. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch. 1996;431:828–837.
  • Numazaki M, Tominaga T, Takeuchi K, et al. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA. 2003;100:8002–8006.
  • Nolano M, Simone DA, Wendelschafer-Crabb G, et al. Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation. Pain. 1999;81:135–145.
  • Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–313.
  • Amaya F, Shimosato G, Nagano M, et al. NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur J Neurosci. 2004;20:2303–2310.
  • Yu L, Yang F, Luo H, et al. The role of TRPV1 in different subtypes of dorsal root ganglion neurons in rat chronic inflammatory nociception induced by complete Freund's adjuvant. Mol Pain. 2008;4:61.
  • Varga A, Bölcskei K, Szöke E, et al. Relative roles of protein kinase A and protein kinase C in modulation of transient receptor potential vanilloid type 1 receptor responsiveness in rat sensory neurons in vitro and peripheral nociceptors in vivo. Neuroscience. 2006;140:645–657.
  • Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA. 2001;98:6951–6956.
  • Wasilewski A, Lewandowska U, Mosinska P, et al. Cannabinoid receptor type 1 and mu-opioid receptor polymorphisms are associated with cyclic vomiting syndrome. Am J Gastroenterol. 2017;112:933–939.
  • van Wijk G, Veldhuijzen DS. Perspective on diffuse noxious inhibitory controls as a model of endogenous pain modulation in clinical pain syndromes. J Pain. 2010;11:408–419.
  • Lautenbacher S, Rollman GB. Possible deficiencies of pain modulation in fibromyalgia. Clin J Pain. 1997;13:189–196.
  • Wilder-Smith CH, Schindler D, Lovblad K, et al. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut. 2004;53:1595–1601.
  • Price DD, McHaffie JG. Effects of heterotopic conditioning stimuli on first and second pain: a psychophysical evaluation in humans. Pain. 1988;34:245–252.
  • Witting N, Svensson P, Arendt-Nielsen L, et al. Differential effect of painful heterotopic stimulation on capsaicin-induced pain and allodynia. Brain Res. 1998;801:206–210.
  • Valeriani M, Tinazzi M, Le Pera D, et al. Inhibitory effect of capsaicin evoked trigeminal pain on warmth sensation and warmth evoked potentials. Exp Brain Res. 2005;160:29–37.
  • Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108–1112.
  • Hornby PJ. Central neurocircuitry associated with emesis. Am J Med. 2001;111 Suppl 8A:106S–112S.
  • Zhong W, Picca AJ, Lee AS, et al. Ca(2+) signaling and emesis: recent progress and new perspectives. Auton Neurosci. 2017;202:18–27.
  • Hajna Z, Sághy É, Payrits M, et al. Capsaicin-sensitive sensory nerves mediate the cellular and microvascular effects of H2S via TRPA1 receptor activation and neuropeptide release. J Mol Neurosci. 2016;60:157–170.
  • Loyd DR, Chen PB, Hargreaves KM. Anti-hyperalgesic effects of anti-serotonergic compounds on serotonin- and capsaicin-evoked thermal hyperalgesia in the rat. Neuroscience. 2012;203:207–215.
  • Rudd JA, Nalivaiko E, Matsuki N, et al. The involvement of TRPV1 in emesis and anti-emesis. Temperature (Austin). 2015;2:258–276.
  • Shiroshita Y, Koga T, Fukuda H. Capsaicin in the 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons. Eur J Pharmacol. 1997;339:183–192.
  • Kim KS, Koo MS, Jeon JW, et al. Capsicum plaster at the Korean hand acupuncture point reduces postoperative nausea and vomiting after abdominal hysterectomy. Anesth Analg. 2002;95:1103–1107.
  • Agarwal A, Dhiraaj S, Tandon M, et al. Evaluation of capsaicin ointment at the Korean hand acupressure point K-D2 for prevention of postoperative nausea and vomiting. Anaesthesia. 2005;60:1185–1188.
  • Misra MN, Pullani AJ, Mohamed ZU. Prevention of PONV by acustimulation with capsicum plaster is comparable to ondansetron after middle ear surgery. Can J Anaesth. 2005;52:485–489.
  • Koo MS, Kim KS, Lee HJ, et al. Antiemetic efficacy of capsicum plaster on acupuncture points in patients undergoing thyroid operation. Korean J Anesthesiol. 2013;65:539–543.
  • Pintér E, Helyes Z, Szolcsányi J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther. 2006;112:440–456.
  • Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20:157–198.
  • Braun M. The somatostatin receptor in human pancreatic β-cells. Vitam Horm. 2014;95:165–193.
  • Malaisse WJ. Paracrine control of glucagon release by somatostatin (Review). Int J Mol Med. 2014;33:491–498.
  • Mózsik G, Szolcsányi J, Rácz I. Gastroprotection induced by capsaicin in healthy human subjects. World J Gastroenterol. 2005;11:5180–5184.
  • Yi CH, Lei WY, Hung JS, et al. Differences in the control of secondary peristalsis in the human esophagus: influence of the 5-HT4 receptor versus the TRPV1 receptor. PLoS One. 2016;11:e0159452.
  • Németh J, Reglödi D, Pozsgai G, et al. Effect of pituitary adenylate cyclase activating polypeptide-38 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience. 2006;143:223–230.
  • Holgert H, Holmberg K, Hannibal J, et al. PACAP in the adrenal gland–relationship with choline acetyltransferase, enkephalin and chromaffin cells and effects of immunological sympathectomy. Neuroreport. 1996;20:297–301.
  • Stroth N, Holighaus Y, Ait-Ali D, et al. PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann N Y Acad Sci. 2011;1220:49–59.
  • Hamelink C, Tjurmina O, Damadzic R, et al. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA. 2002;99:461–466.
  • Ramikie TS, Ressler KJ. Stress-related disorders, pituitary adenylate cyclase-activating peptide (PACAP)ergic system, and sex differences. Dialogues Clin Neurosci. 2016;18:403–413.
  • Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry. 2015;78:167–177.
  • Stevens JS, Almli LM, Fani N, et al. PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc Natl Acad Sci USA. 2014;111:3158–3163.
  • Fischer MJ. Calcitonin gene-related peptide receptor antagonists for migraine. Expert Opin Investig Drugs. 2010;19:815–823.
  • Cianchetti C. Capsaicin jelly against migraine pain. Int J Clin Pract. 2010;64:457–459.
  • Fusco BM, Barzoi G, Agrò F. Repeated intranasal capsaicin applications to treat chronic migraine. Br J Anaesth. 2003;90:812.
  • Fusco BM, Marabini S, Maggi CA, et al. Preventative effect of repeated nasal applications of capsaicin in cluster headache. Pain. 1994;59:321–325.
  • Marks DR, Rapoport A, Padla D, et al. A double-blind placebo-controlled trial of intranasal capsaicin for cluster headache. Cephalalgia. 1993;13:114–116.
  • Winner P. Abdominal migraine. Semin Pediatr Neurol. 2016;23:11–13.
  • Evans RW, Whyte C. Cyclic vomiting syndrome and abdominal migraine in adults and children. Headache. 2013;53:984–993.
  • Vass Z, Dai CF, Steyger PS, et al. Co-localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibers innervating cochlear and vertebro-basilar arteries. Neuroscience. 2004;124:919–927.
  • Balaban CD, Zhou J, Li HS. Type 1 vanilloid receptor expression by mammalian inner ear ganglion cells. Hear Res. 2003;175:165–170.
  • Vass Z, Steyger PS, Hordichok AJ, et al. Capsaicin stimulation of the cochlea and electric stimulation of the trigeminal ganglion mediate vascular permeability in cochlear and vertebro-basilar arteries: a potential cause of inner ear dysfunction in headache. Neuroscience. 2001;103:189–201.
  • de Tommaso M, Sardaro M, Pecoraro C, et al. Effects of the remote C fibres stimulation induced by capsaicin on the blink reflex in chronic migraine. Cephalalgia. 2007;27:881–890.
  • Nicolson TA, Bevan S, Richards CD. Characterisation of the calcium responses to histamine in capsaicin-sensitive and capsaicin-insensitive sensory neurones. Neuroscience. 2002;110:329–338.
  • Taylor-Clark TE, Kollarik M, MacGlashan DW Jr, et al. Nasal sensory nerve populations responding to histamine and capsaicin. J Allergy Clin Immunol. 2005;116:1282–1288.
  • Brull SJ, Atanassoff PG, Silverman DG, et al. Attenuation of experimental pruritus and mechanically evoked dysesthesiae in an area of cutaneous allodynia. Somatosens Mot Res. 1999;16:299–303.
  • Shim WS, Tak MH, Lee MH, et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27:2331–2337.
  • Yosipovitch G, Fast K, Bernhard JD. Noxious heat and scratching decrease histamine-induced itch and skin blood flow. J Invest Dermatol. 2005;125:1268–1272.
  • Schmelz M, Schmid R, Handwerker HO, et al. Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain. 2000;123:560–571.
  • Weisshaar E, Heyer G, Forster C, et al. Effect of topical capsaicin on the cutaneous reactions and itching to histamine in atopic eczema compared to healthy skin. Arch Dermatol Res. 1998;290:306–311.
  • Witting N, Svensson P, Arendt NL, et al. Repetitive intradermal capsaicin: differential effect on pain and areas of allodynia and punctate hyperalgesia. Somatosens Mot Res. 2000;17:5–12.
  • Mochizuki H, Tashiro M, Kano M, et al. Imaging of central itch modulation in the human brain using positron emission tomography. Pain. 2003;105:339–346.
  • Andrews PL, Sanger GJ. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr Opin Pharmacol. 2002;2:650–656.
  • Patterson LM, Zheng H, Ward SM, et al. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res. 2003;311:277–287.
  • Sharkey KA, Oland LD, Kirk DR, et al. Capsaicin-sensitive vagal stimulation-induced gastric acid secretion in the rat: evidence for cholinergic vagal afferents. Br J Pharmacol. 1991;103:1997–2003.
  • Nakamura T, Onaga T, Kitazawa T. Ghrelin stimulates gastric motility of the guinea pig through activation of a capsaicin-sensitive neural pathway: in vivo and in vitro functional studies. Neurogastroenterol Motil. 2010;22:446–452.
  • Lang PM, Grafe P. Chemosensitivity of unmyelinated axons in isolated human gastric vagus nerve. Auton Neurosci. 2007;136:100–104.
  • Blackshaw LA, Page AJ, Partosoedarso ER. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience. 2000;96:407–416.
  • Minami M, Endo T, Hirafuji M, et al. Pharmacological aspects of anticancer drug-induced emesis with emphasis on serotonin release and vagal nerve activity. Pharmacol Ther. 2003;99:149–165.
  • Zhu JX, Zhu XY, Owyang C, et al. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. J Physiol. 2001;530:431–442.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.