599
Views
15
CrossRef citations to date
0
Altmetric
Basic Research

Antivenom effect on lymphatic absorption and pharmacokinetics of coral snake venom using a large animal model

, , , , , , , , , & show all
Pages 727-734 | Received 06 Sep 2018, Accepted 12 Nov 2018, Published online: 18 Feb 2019

References

  • Vergara I, Pedraza-Escalona M, Paniagua D, et al. Eastern coral snake Micrurus fulvius venom toxicity in mice is mainly determined by neurotoxic phospholipases A2. J Proteomics. 2014;105:295–306.
  • Lomonte B, Rey-Suárez P, Fernández J, et al. Venoms of Micrurus coral snakes: evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon. 2016;122:7–25.
  • Kitchens CS, Van Mierop LH. Envenomation by the Eastern coral snake (Micrurus fulvius fulvius). A study of 39 victims. JAMA. 1987;258:1615–1618.
  • Wood A, Schauben J, Thundiyil J, et al. Review of Eastern coral snake (Micrurus fulvius fulvius) exposures managed by the Florida Poison Information Center Network:1998–2010. Clin Toxicol. 2013;51:783–788.
  • Walter FG, Bilden EF, Gibly RL. Envenomations. Crit Care Clin. 1999;15:353–386.
  • Gutiérrez JM, Solano G, Pla D, et al. Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead. Toxins (Basel). 2017;9(5):pii:E163. doi:10.3390/toxins9050163.
  • Woo S, Jusko WJ. Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos. 2007;35:1672–1678.
  • Paniagua D, Jimenez L, Romero C, et al. Lymphatic route of transport and pharmacokinetics of Micrurus fulvius (coral snake) venom in sheep. Lymphology. 2012;45:144–153.
  • Reid HA, Theakston RD. The management of snake bite. Bull World Health Organ. 1983;61:885–895.
  • Seifert SA, Boyer LV, Dart RC, et al. Relationship of venom effects to venom antigen and antivenom serum concentrations in a patient with Crotalus atrox envenomation treated with a fab antivenom. Ann Emerg Med. 1997;30:49–53.
  • Boyer LV, Seifert SA, Clark RF, et al. Recurrent and persistent coagulopathy following pit viper envenomation. Arch Intern Med. 1999;159:706–710.
  • Bush SP, Seifert SA, Oakes J, et al. Continuous IV Crotalidae polyvalent immune fab (ovine) (fabAV) for selected North American rattlesnake bite patients. Toxicon. 2013;69:29–37.
  • Gutiérrez JM, León G, Lomonte B. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet. 2003;42:721–741.
  • Seifert SA, Boyer LV. Recurrence phenomena after immunoglobulin therapy for snake envenomations: part 1. Pharmacokinetics and pharmacodynamics of immunoglobulin antivenoms and related antibodies. Ann Emerg Med. 2001;37:189–195.
  • Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;07:167–169.
  • Porter CJH, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89:297–310.
  • McLennan DN, Porter CJH, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today Technol. 2005;2:89–96.
  • Kota J, Machavaram KK, McLennan DN, et al. Lymphatic absorption of subcutaneously administered proteins: influence of different injection sites on the absorption of darbepoetin alfa using a sheep model. Drug Metab Dispos. 2007;35:2211–2217.
  • Porter CJ, Edwards GA, Charman SA. Lymphatic transport of proteins after s.c. injection: implications of animal model selection. Adv Drug Deliv Rev. 2001;50:157–171.
  • NCT01337245, Emergency Treatment of Coral Snake Envenomation with Antivenom. Available from: https://clinicaltrials.gov/ct2/show/NCT01337245?term=coral+snake&rank=1
  • Canadian Council on Animal Care. CCAC guidelines on: the care and use of farm animals in research, teaching and testing. Ottawa (ON): Canadian Council on Animal Care; 2009.
  • Canadian Council on Animal Care. Guide to the care and use of experimental animals. 2nd ed. Vol. 1. Ottawa (ON): Canadian Council on Animal Care; 1993.
  • National Research Council. Guide for the care and use of laboratory animals. 8th ed. Washington (DC): National Academies Press; 2011.
  • Leary S, Underwood W, Anthony RCS. AVMA guidelines for the euthanasia of animals. Schaumburg (IL): Elsevier; 2013.
  • Boyer LV, Theodorou AA, Berg RA, et al. Antivenom for critically ill children with neurotoxicity from scorpion stings. N Engl J Med. 2009;360:2090–2098.
  • Linares RR. Desarrollo y optimización de un método analítico tipo ELISA para la cuantificación de proteínas de bajo peso molecular del veneno de Micrurus fulvius en suero y linfa ovinas [bachelor’s thesis]. Puebla (MX): Benemérita Universidad Autónoma de Puebla; 2013.
  • Riviere G, Choumet V, Audebert F, et al. Effect of antivenom on venom pharmacokinetics in experimentally envenomed rabbits: toward an optimization of antivenom therapy. J Pharmacol Exp Ther. 1997;281:1–8.
  • Krifi MN, Savin S, Debray M, et al. Pharmacokinetic studies of scorpion venom before and after antivenom immunotherapy. Toxicon. 2005;45:187–198.
  • Yang DC, Dobson J, Cochran C, et al. The bold and the beautiful: a neurotoxicity comparison of new world coral snakes in the Micruroides and micrurus genera and relative neutralization by antivenom. Neurotox Res. 2017;32:487–495.
  • Dahlberg AM, Kaminskas LM, Smith A, et al. The lymphatic system plays a major role in the intravenous and subcutaneous pharmacokinetics of trastuzumab in rats. Mol Pharmaceutics. 2014;11:496–504.
  • Seifert SA, Warrick BJ. Immunotoxicology. Crit Care Toxicol. 2016;2:1–15.
  • Ismail M, Abd-Elsalam MA, Al-Ahaidib MS. Pharmacokinetics of 125I-labelled Walterinnesia aegyptia venom and its specific antivenins: flash absorption and distribution of the venom and its toxin versus slow absorption and distribution of IGG, F(AB’)2 and F(AB) of the antivenin. Toxicon. 1998;36:93–114.
  • Sevcik C, D'Suze G, Díaz P, et al. Modelling Tityus scorpion venom and antivenom pharmacokinetics. Evidence of active immunoglobulin G’s F(ab’)2 extrusion mechanism from blood to tissues. Toxicon. 2004;44:731–741.
  • Vazquez H, Chavez-Haro A, Garcia-Ubbelohde W, et al. Pharmacokinetics of a F(ab’)2 scorpion antivenom in healthy human volunteers. Toxicon. 2005;46:797–805.
  • Vázquez H, Olvera F, Paniagua-Solís J, et al. Pharmacokinetics in rabbits and anti-sphingomyelinase D neutralizing power of Fab, F(ab')(2), IgG and IgG(T) fragments from hyper immune equine plasma. Int Immunopharmacol. 2010;10:447–454.
  • Boyer LV, Chase PB, Degan JA, et al. Subacute coagulopathy in a randomized, comparative trial of Fab and F(ab’)2 antivenoms. Toxicon. 2013;74:101–108.
  • Bush SP, Ruha AM, Seifert SA, et al. Comparison of F(ab')2 versus Fab antivenom for pit viper envenomation: a prospective, blinded, multicenter, randomized clinical trial. Clin Toxicol. 2015;53:37–45.
  • Carbajal-Saucedo A, López-Vera E, Bénard-Valle M, et al. Isolation, characterization, cloning and expression of an alpha-neurotoxin from the venom of the Mexican coral snake Micrurus laticollaris (Squamata: Elapidae). Toxicon. 2013;66:64–74.
  • Bénard-Valle M, Carbajal-Saucedo A, de Roodt A, et al. Biochemical characterization of the venom of the coral snake Micrurus tener and comparative biological activities in the mouse and a reptile model. Toxicon. 2014;77:6–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.