751
Views
14
CrossRef citations to date
0
Altmetric
Review

The kiss of (cell) death: can venom-induced immune response contribute to dermal necrosis following arthropod envenomations?

ORCID Icon, ORCID Icon & ORCID Icon
Pages 677-685 | Received 28 Aug 2018, Accepted 29 Jan 2019, Published online: 26 Feb 2019

References

  • Brodie ED. Toxins and venoms. Curr Biol. 2009;19:R931–R935.
  • Mingomataj EC, Bakiri AH, Ibranji A. Unusual reactions to hymenoptera stings: what should we keep in mind? Clin Rev Allergy Immunol. 2014;47:91–99.
  • Moura -da -Silva AM, et al. Processing of pro‐tumor necrosis factor‐α by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol. 1996;26:2000–2005.
  • Laing GD, Clissa PB, Theakston RDG, et al. Inflammatory pathogenesis of snake venom metalloproteinase‐induced skin necrosis. Eur J Immunol. 2003;33:3458–3463.
  • Katkar GD, Sundaram MS, NaveenKumar SK, et al. NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction. Nat Commun. 2016;7:11361.
  • Cegolon L, Heymann WC, Lange JH, et al. Jellyfish stings and their management: a review. Mar Drugs. 2013;11:523–550.
  • García-Arredondo A, Rojas A, Iglesias-Prieto R, et al. Structure of nematocysts isolated from the fire corals Millepora alcicornis and Millepora complanata (Cnidaria: Hydrozoa). J Venom Anim Toxins Incl Trop Dis. 2012;18:109–115.
  • Yanagawa Y, Morita K, Sugiura T, et al. Cutaneous hemorrhage or necrosis findings after Vespa mandarinia (wasp) stings may predict the occurrence of multiple organ injury: a case report and review of literature. Clin Toxicol (Phila). 2007;45:803–807.
  • Knight D, Bangs MJ. Case report. Cutaneous allergic vasculitis due to Solenopsis geminata (Hymenoptera: Formicidae) envenomation in Indonesia. Southeast Asian J Trop Med Public Health. 2007;38:808.
  • Chiu TM, Lin YM, Wang SC, et al. Hypersensitivity to mosquito bites as the primary clinical manifestation of an Epstein–Barr virus infection. J Microbiol Immunol Infect. 2016;49:613–616.
  • Srihari S, Kombettu AP, Rudrappa KG, et al. Paederus dermatitis: a case series. Indian Dermatol Online J. 2017;8:361–364.
  • Fung T, Lam SK, Wong OF. Centipede bite victims: a review of patients presenting to two emergency departments in Hong Kong. Hong Kong Med J. 2011;17:381–385.
  • de Oliveira Pardal PP, Arraes JAA, Weekes KW, et al. Dermatitis caused by centipede envenomation: a case report. Rev Patol Trop. 2017;46:343–348.
  • Chadha JS, Leviav A. Hemolysis, renal failure, and local necrosis following scorpion sting. JAMA. 1979;241:1038
  • Radmanesh M. Cutaneous manifestations of the Hemiscorpius lepturus sting: a clinical study. Int J Dermatol. 1998;37:500–507.
  • Boissiere F, Masson R, Fluieraru S, et al. Cutaneous loxoscelism, about an exceptional observation of 9 consecutive cases. Ann Chir Plast Esthet. 2016;61:811–819.
  • Dunbar JP, Afoullouss S, Sulpice R, et al. Envenomation by the noble false widow spider Steatoda nobilis (Thorell, 1875)–five new cases of steatodism from Ireland and Great Britain. Clin Toxicol. 2018;56:433–435.
  • Stuber M, Nentwig W. How informative are case studies of spider bites in the medical literature? Toxicon. 2016;114:40–44.
  • Vetter RS, Isbister GK, Bush SP, et al. Verified bites by yellow sac spiders (genus Cheiracanthium) in the United States and Australia: where is the necrosis? Am J Trop Med Hyg. 2006;74:1043–1048.
  • Nentwig W, Pantini P, Vetter RS. Distribution and medical aspects of Loxosceles rufescens, one of the most invasive spiders of the world (Araneae: Sicariidae). Toxicon. 2017;132:19–28.
  • Vetter RS, Stoecker WV, Dart RC, Envenomations by widow, recluse, and medically implicated spiders. Dordrecht: Springer; 2018. p. 379–412.
  • Saez NJ, Senff S, Jensen JE, et al. Spider-venom peptides as therapeutics. Toxins (Basel). 2010;2:2851–2871.
  • Undheim EA, Jones A, Clauser KR, et al. Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (Centipedes). Mol Biol Evol. 2014;31:2124–2148.
  • Bawaskar HS, Bawaskar PH. Scorpion sting: update. J Assoc Phys India. 2012;60:46–55.
  • Logan JL, Ogden DA. Rhabdomyolysis and acute renal failure following the bite of the giant desert centipede Scolopendra heros. West J Med. 1985;142:549
  • Jalali A, Pipelzadeh MH, Sayedian R, et al. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran. Toxicon. 2010;55:173–179.
  • Jalali A, Pipelzadeh MH, Taraz M, et al. Serum TNF-α levels reflect the clinical severity of envenomation following a Hemiscorpius lepturus sting. Eur Cytokine Netw. 2011;22:5–10.
  • Vetter RS. Clinical consequences of toxic envenomation by spiders. Toxicon. 2018;152:65–70.
  • Gaver-Wainwright MM, Zack RS, Foradori MJ, et al. Misdiagnosis of spider bites: bacterial associates, mechanical pathogen transfer, and hemolytic potential of venom from the hobo spider, Tegenaria agrestis (Araneae: Agelenidae). J Med Entomol. 2011;48:382–388.
  • White J, Weinstein SA. A phoenix of clinical toxinology: White-tailed spider (Lampona spp.) bites. A case report and review of medical significance. Toxicon. 2014;87:76–80.
  • Swanson DL, Vetter RS. Loxoscelism. Clin Dermatol. 2006;24:213–221.
  • Cohen N, Sarafian DA, Alon I, et al. Dermonecrotic loxoscelism in the Mediterranean region. Cutan Ocul Toxicol. 1999;18:75–83.
  • Rubenstein E, Stoebner PE, Herlin C, et al. Documented cutaneous loxoscelism in the south of France: an unrecognized condition causing delay in diagnosis. Infection. 2016;44:383–387.
  • Garb JE, González A, Gillespie RG. The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol. 2004;31:1127–1142.
  • Gendreau KL, Haney RA, Schwager EE, et al. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity. BMC Genomics. 2017;18:178.
  • Rojas JM, Arán-Sekul T, Cortés E, et al. Phospholipase D from Loxosceles laeta spider venom induces IL-6, IL-8, CXCL1/GRO-α, and CCL2/MCP-1 production in human skin fibroblasts and stimulates monocytes migration. Toxins. 2017;9:125.
  • Ahrens B, Crocker C. Bacterial etiology of necrotic arachnidism in black widow spider bites. J Clinic Toxicol. 2011;1:106.
  • Atakuziev BU, Wright CE, Graudins A, et al. Efficacy of Australian red-back spider (Latrodectus hasselti) antivenom in the treatment of clinical envenomation by the cupboard spider Steatoda capensis (Theridiidae). Toxicon. 2014;86:68–78.
  • Vetter RS, Swanson DL, Weinstein SA, et al. Do spiders vector bacteria during bites? The evidence indicates otherwise. Toxicon. 2015;93:171–174.
  • Hauke TJ, Herzig V. Dangerous arachnids-Fake news or reality? Toxicon. 2017;138:173–183.
  • Esmaeilishirazifard E, Usher L, Trim C, et al. Microbial adaptation to venom is common in snakes and spiders. bioRxiv. 2018;348:433.
  • Domingos MO, Barbaro KC, Tynan W, et al. Influence of sphingomyelin and TNF-alpha release on lethality and local inflammatory reaction induced by Loxosceles gaucho spider venom in mice . Toxicon. 2003;42:471–479.
  • Hogan CJ, Barbaro KC, Winkel K. Loxoscelism: old obstacles, new directions. Ann Emerg Med. 2004;44:608–624.
  • Szold O, Ben-Abraham R, Frolkis I, et al. Tumor necrosis factor as a mediator of cardiac toxicity following snake envenomation. Crit Care Med. 2003;31:1449–1453.
  • Ribeiro MF, Oliveira FL, Monteiro-Machado M, et al. Pattern of inflammatory response to Loxosceles intermedia venom in distinct mouse strains: a key element to understand skin lesions and dermonecrosis by poisoning. Toxicon. 2015;96:10–23.
  • Patel KD, Modur V, Zimmerman GA, et al. The necrotic venom of the brown recluse spider induces dysregulated endothelial cell-dependent neutrophil activation. Differential induction of GM-CSF, IL-8, and E-selectin expression . J Clin Invest. 1994;94:631–642.
  • Domingos MO, Tynan W, Barbaro KC, et al. Effect of Loxosceles gaucho venom on cell morphology and behaviour in vitro in the presence and absence of sphingomyelin. Toxicon. 2003;42:439–445.
  • Elmore SA, Dixon D, Hailey JR, et al. Recommendations from the INHAND apoptosis/necrosis working group. Toxicol Pathol. 2016;44:173–188.
  • Adigun R, Bhimji SS, Necrosis, cell (liquefactive, coagulative, caseous, fat, fibrinoid, and gangrenous). Treasure Island (FL): StatPearls Publishing; 2017.
  • Harrison RA, Cook DA, Renjifo C, et al. Research strategies to improve snakebite treatment: Challenges and progress. J Proteomics. 2011;74:1768–1780.
  • Vandenabeele P, Galluzzi L, Berghe TV, et al. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700.
  • Berghe TV, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–147.
  • Blériot C, Lecuit M. The interplay between regulated necrosis and bacterial infection. Cell Mol Life Sci. 2016;73:2369–2378.
  • Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311
  • McGeehan GM, Becherer JD, Bast Jr RC, et al. Regulation of tumour necrosis factor-α processing by a metalloproteinase inhibitor. Nature. 1994;370:558.
  • Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362
  • Ferraz CR, Calixto-Campos C, Manchope MF, et al. Jararhagin-induced mechanical hyperalgesia depends on TNF-α, IL-1β and NFκB in mice. Toxicon. 2015;103:119–128.
  • Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122:2784–2794.
  • Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–241.
  • Cimmino G, Salvatore F, Paolo G, The two faces of thrombosis: coagulation cascade and platelet aggregation. Are platelets the main therapeutic target? J Thrombo Cir. 2017;3:117.
  • Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10:136–144.
  • Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1777–1783.
  • Dhananjaya BL, D Souza CJM. An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry Mosc. 2010;75:1–6.
  • Bennacef-Heffar N, Laraba-Djebari F. Beneficial effects of heparin and l arginine on dermonecrosis effect induced by Vipera lebetina venom: involvement of NO in skin regeneration. Acta Tropica. 2017;171:226–232.
  • Slagboom J, Kool J, Harrison RA, et al. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. Br J Haematol. 2017;177:947–959.
  • Kemparaju K, Girish KS. Snake venom hyaluronidase: a therapeutic target. Cell Biochem Funct. 2006;24:7–12.
  • Marques SM, Campos PP, Castro PR, et al. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res. 2011;82:246–252.
  • Rivera IG, Ordoñez M, Presa N, et al. Sphingomyelinase D/ceramide 1-phosphate in cell survival and inflammation. Toxins (Basel). 2015;7:1457–1466.
  • Khodadadi A, Pipelzadeh MH, Vazirianzadeh B, et al. An in vitro comparative study upon the toxic properties of the venoms from Hemiscorpius lepturus, Androctonus crassicauda and Mesobuthus eupeus scorpions. Toxicon. 2012;60:385–390.
  • Zare MA. Hemiscorpius lepturus envenomation: manifestations and management with specific antivenom. Archiv Razi Inst. 2013;68:91–99.
  • Seyedian R, Pipelzadeh MH, Jalali A, et al. Enzymatic analysis of Hemiscorpius lepturus scorpion venom using zymography and venom-specific antivenin. Toxicon. 2010;56:521–525.
  • Wigger E, Kuhn-Nentwig L, Nentwig W. The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon. 2002;40:749–752.
  • Dugon MM, Arthur W. Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). J Insect Physiol. 2012;58:874–880.
  • Morgenstern D, King GF. The venom optimization hypothesis revisited. Toxicon. 2013;63:120–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.