262
Views
20
CrossRef citations to date
0
Altmetric
Basic Research

Bothrops snakebites in the Amazon: recovery from hemostatic disorders after Brazilian antivenom therapy

, , , , , , , , , , , , , , , , , & show all
Pages 266-274 | Received 24 Apr 2019, Accepted 05 Jun 2019, Published online: 02 Jul 2019

References

  • Chippaux JP. Incidence and mortality due to snakebite in the Americas. PLoS Negl Trop Dis. 2017;11:e0005662.
  • Alcântara JA, Bernarde PS, Sachett J, et al. Stepping into a dangerous quagmire: macroecological determinants of Bothrops envenomings, Brazilian Amazon. PLoS One. 2018;13:e0208532. Internet]. Available from: http://dx.plos.org/10.1371/journal.pone.0208532
  • de Oliveira SS, de Souza Sampaio V, de Almeida Gonçalves Sachett J, et al. Snakebites in the Brazilian Amazon: current knowledge and perspectives. In: Vogel C-W, Seifert SA, Tambourgi DV., editors. Clinical Toxinology in Australia, Europe, and Americas [Internet]. Springer; 2018. p. 73–99. Available from: http://link.springer.com/10.1007/978-94-007-6288-6_61-2
  • Wen FH, Monteiro WM, Moura da Silva AM, et al. Snakebites and scorpion stings in the Brazilian Amazon: identifying research priorities for a largely neglected problem. PLoS Negl Trop Dis. 2015;9:e0003701.
  • Alves EC, Gonc JDA, Sousa DDB, et al. Predicting acute renal failure in Bothrops snakebite patients in a tertiary reference center. Western Brazilian Amazon. 2018;1:1–16.
  • Pardal PPO, Souza SM, Monteiro MRCC, et al. Clinical trial of two antivenoms for the treatment of Bothrops and Lachesis bites in the north eastern Amazon region of Brazil. Trans R Soc Trop Med Hyg. 2004;98:28–42.
  • Sachett JAG, da Silva IM, Alves EC, et al. Poor efficacy of preemptive amoxicillin clavulanate for preventing secondary infection from Bothrops snakebites in the Brazilian Amazon: a randomized controlled clinical trial. PLoS Negl Trop Dis. 2017;11:e0005745.
  • Mendonça-da-Silva I, Magela Tavares A, Sachett J, et al. Safety and efficacy of a freeze-dried trivalent antivenom for snakebites in the Brazilian Amazon: an open randomized controlled phase IIb clinical trial. PLoS Negl Trop Dis. 2017;11:e0006068.
  • Oliveira S, Alves E, Santos A, et al. Factors associated with systemic bleeding in Bothrops envenomation in a Tertiary Hospital in the Brazilian Amazon. Toxins. 2019;11:22. Available from: http://www.mdpi.com/2072-6651/11/1/22
  • Souza AS, Sachett JAG, Alcântara JA, et al. Snakebites as cause of deaths in the Western Brazilian Amazon: why and who dies? deaths from snakebites in the Amazon. Toxicon. 2018;145:15–24. Available from: https://doi.org/10.1016/j.toxicon.2018.02.041
  • Gutiérrez J. Global availability of antivenoms: the relevance of public manufacturing laboratories. Toxins. 2018;11:5. Available from: http://www.mdpi.com/2072-6651/11/1/5
  • Cardoso DF, Yamaguchi IK, Moura-da-Silva AM. Production of antitoxin sera and perspectives of modernization by techniques of molecular biology. In: Cardoso JLC, França FOS, Wen FH, et al, editors. Venomous Animals in Brazil: biology, clinical and therapeutics of accidents. 2nd ed. São Paulo: SARVIER; 2009. p. 419–431.
  • Furtado MFD, Travaglia-Cardoso SR, Rocha M. Sexual dimorphism in venom of Bothrops jararaca (Serpentes: Viperidae). Toxicon. 2006;48:401–410.
  • Sousa LF, Portes-Junior JA, Nicolau CA, et al. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon. J Proteomics. 2017;159:32–46. Available from: http://dx.doi.org/10.1016/j.jprot.2017.03.003
  • Daltry JC, Wüster W, Thorpe RS. Diet and snake venom evolution. Nature. 1996;379:537–540.
  • López-Lozano JL, De Sousa MV, Ricart CAO, et al. Ontogenetic variation of metalloproteinases and plasma coagulant activity in venoms of wild Bothrops atrox specimens from Amazonian rain forest. Toxicon. 2002;40:997–1006.
  • Calvete JJ, Sanz L, Pérez A, et al. Snake population venomics and antivenomics of Bothrops atrox: paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. J Proteomics. 2011;74:510–527. Available from: http://dx.doi.org/10.1016/j.jprot.2011.01.003
  • Chippaux J-P, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279–1303.
  • Sousa LF, Nicolau C, Peixoto PS, et al. Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of Bothrops complex. PLoS Negl Trop Dis. 2013;7:e2442. Available from: http://dx.plos.org/10.1371/journal.pntd.0002442
  • Sousa LF, Zdenek CN, Dobson JS, et al. Coagulotoxicity of Bothrops (lancehead pit-vipers) Venoms from Brazil: differential biochemistry and antivenom efficacy resulting from prey-driven venom variation. Toxins. 2018;10:411.
  • Brazil. Ministry of Health. Secretariat of Health Surveillance. Department of Epidemiological Surveillance. Snakebite. In: FUNASA, editor. Manual of diagnosis and treatment of accidents by venomous animals [Internet]. 2nd ed. Brasília: National Health Foundation; 2001. p. 120. Available from: www.icict.fiocruz.br/sites/www.icict.fiocruz.br/files/Manual-de-Diagnostico-e-Tratamento-de-Acidentes-por-Animais-Pe--onhentos.pdf
  • Brazil. Ministry of Health. Secretariat of Health Surveillance. General Coordination of Epidemiology Development in Services. Accidents for venomous animals. In: Cavalcante AL, editor. Guide to Health surveillance: single volume [Internet]. 2nd ed. Brasília: Ministry of Health; 2017. p. 627-29. Available from: http://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_epidemiologica_2ed.pdf
  • Sano-Martins IS, Fan HW, Castro SCB, et al. Reliability of the simple 20 minute whole blood clotting test (WBCT20) as an indicator of low plasma fibrinogen concentration in patients envenomed by Bothrops snakes. Toxicon. 1994;32:1045–1050.
  • Warrell DA, Davidson NM, Greenwood BM, et al. Poisoning by bites of the saw-scaled orcarpetviper (Echis carinates) in Nigeria. Q Jl Med. 1977;46:33–62.
  • Warrell DA, Looareesuwan S, Theakston RDG, et al. Randomized comparative trial of three monospecific antivenoms for bites by the Malayan pitviper (Calloselasma rhodostoma) in southern Thailand: clinical and laboratory correlations. Am J Trop Med Hyg. 1986;35:1235–1247.
  • Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957;17:237–246.
  • Blomback B. Studies on the action of thrombic enzymes on bovine fibrinogen as measured by N-terminal analysis. Ark Kemi. 1958;12:321–335.
  • Stocker K, Barlow GH. The coagulant enzyme from Bothrops atrox venom (Batroxobin). Meth Enzymol. 1976;45:214–223.
  • Petretski JH, Kanashiro M, Silva CP, et al. Two related thrombin-like enzymes present in Bothrops atrox venom. Braz J Med Biol Res. 2000;33:1293–1300.
  • Hofmann H, Bon C. Blood coagulation induced by the venom of Bothrops atrox. 1. identification, purification, and properties of a prothrombin activator. Biochemistry. 1987;26:772–780.
  • Hofmann H, Bon C. Blood coagulation induced by the venom of Bothrops atrox. 2. identification, purification, and properties of two factor X activators. Biochemistry. 1987;26:780–787.
  • Rosing J, Govers-Riemslag JW, Yukelson L, et al. Factor V activation and inactivation by venom proteases. Haemostasis. 2001;31:241–246.
  • Niewiarowski S, Kirby EP, Brudzynski TM, et al. Thrombocytin, a serine protease from Bothrops atrox venom. 2. Interaction with platelets and plasma-clotting factors. Biochemistry. 1979;18:3570–3577.
  • Cintra ACO, De Toni LGB, Sartim MA, et al. Batroxase, a new metalloproteinase from B. atrox snake venom with strong fibrinolytic activity. Toxicon. 2012;60:70–82. Available from: http://dx.doi.org/10.1016/j.toxicon.2012.03.018
  • Cardoso JLC, Fan HW, França FOS, et al. Randomized comparative trial of three antivenomsin the treatment of envenoming by lance-headed vipers (Bothrops jararaca) in São Paulo, Brazil. Q J Med. 1993;86:315–325.
  • Bates SM. d-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin Thromb Hemost. 2012;38:673–682.
  • Colman RW, Clowes AW, Golhaber SZ, et al. Overview of hemostasis. In: Hemostasis an thrombosis: basic principles and clinical practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 1–51.
  • Freitas-De-Sousa LA, Amazonas DR, Sousa LF, et al. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species. Biochimie. 2015;118:60–70.
  • Rucinski B, Niewiarowski S, Holt JC, et al. Batroxostatin, an Arg-Gly-Asp-containing peptide from Bothrops atrox, is a potent inhibitor of platelet aggregation and cell interaction with fibronectin. Biochim Biophys Acta. 1990;1054:257–262.
  • Read MS, Shermer RW, Brinkhous KM. Venom coagglutinin: an activator of platelet aggregation dependent on von Willebrand factor. Proc Natl Acad Sci USA. 1978;75:4514–4518.
  • Santoro ML, Sano-Martins IS, Fan HW, et al. Haematological evaluation of patients bitten by the jararaca, Bothrops jararaca, in Brazil. Toxicon. 2008;51:1440–1448.
  • Sunitha K, Hemshekhar M, Thushara RM, et al. Inflammation and oxidative stress in viper bite: an insight within and beyond. Toxicon. 2015;98:89–97. Available from: http://dx.doi.org/10.1016/j.toxicon.2015.02.014
  • Strapazzon J, de O, Parisotto EB, Moratelli AM, et al. Systemic oxidative stress in victims of Bothrops snakebites. J Appl Biomed. 2015;13:161–167. Available from: http://dx.doi.org/10.1016/j.jab.2014.11.002
  • Oliveira SS, Freitas-de-Sousa LA, Alves EC, et al. Fatal stroke after Bothrops snakebite in the Amazonas state, Brazil: a case report. Toxicon. 2017;138:102–106. Available from: http://dx.doi.org/10.1016/j.toxicon.2017.08.021
  • Kamiguti AS, Cardoso JL, Theakston RD, et al. Coagulopathy and haemorrhage in human victims. Toxicon. 1991;29:961–972.
  • Sanchez EF, Schneider FS, Yarleque A, et al. The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergón) snake venom acts both on blood vessel ECM and platelets. Arch Biochem Biophys. 2010;496:9–20. Available from: http://dx.doi.org/10.1016/j.abb.2010.01.010
  • Kamiguti AS, Rugman FP, Theakston RDG, et al. The role of venom haemorrhagin in spontaneous bleeding in Bothrops jararaca envenoming. Thromb Haemost. 1992;67:(4):484–488.
  • Gutiérrez JM, Rucavado A, Escalante T, et al. Hemorrhage induced by snake venom metalloproteinases : biochemical and biophysical mechanisms involved in microvessel damage. Toxicon. 2005;45:997–1011.
  • Epperla N, Mazza JJ, Yale SH. A review of clinical signs related to ecchymosis. WMJ. 2015;114:61–66.
  • Roberts JR, Greenberg MI. Ascending hemorrhagic signs after a bite from a copperhead. N Engl J Med. 1997;336:1262–1263.
  • Baldo C, Jamora C, Yamanouye N, et al. Mechanisms of vascular danage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis. PLoS Negl Trop Dis. 2010;4:e727.
  • Maduwage K, O'Leary MA, Scorgie FE, et al. Detection of venom after antivenom is not associated with persistent coagulopathy in a prospective cohort of Russell’s Viper (Daboia russelii) envenomings. PLoS Negl Trop Dis. 2014;8:e3304.
  • Theakston RD, Fan HW, Warrell DA, The Butantan Institute Antivenom Study Group (BIASG), et al. Use of enzyme immunoassays to compare the effect and assess the dosage regimens of three Brazilian Bothrops antivenoms. Am J Trop Med Hyg. 1992;47:593–604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.